Effect of Different Dietary Electrolyte Balance Levels on Physiological Responses and Metabolic Rate of Rams Exposed to Heat Stress Conditions

Saleh, A. A. K.¹; G. F. Abozed¹ and A. I. Zanouny²

¹ Animal Production Research Institute, Agriculture Research Center, Dokki, Giza, Egypt.
² Animal Production Dept., Faculty of Agriculture, Minia University.

ABSTRACT

This study was conducted to evaluate the effects of supplementation of different dietary electrolyte balance (DEB, as the equation of Na+K-Cl milliequivalents (meq) /kg of dry matter) levels on physiological and metabolic responses of rams exposed to heat stress and to determine which DEB level is the optimum. A total of 20 mature rams were used in this trial. These animals were divided into four equal homogenized groups (5 each control (received basal diet only and its DEB was 98 meq/kg of feed DM), T₁: DEB 200 meq/kg DM, T₂: D meq/kg DM and T₃: DEB 400 meq/kg DM). Different DEB content of the three treatments was achieved by sodium bicarbonate by a rate of 0.74%, 1.48% and 2.22% of kg DM in T₁, T₂ and T₃, respectively. Thermal response parameters, blood constituents, and respiratory activities were determined during the experimental period before and after solar exposure and after 3 hours of solar exposure (3-4 pm). The results revealed that supplementation of different DEB levels reduced rectal and skin temperatures and respiration rate before and after solar exposure. However, gas volume per minute (GV) and tidal volume (TV) increased significantly in all treated groups. Volume of oxygen consumption (VO₂) and metabolic rate tended to increase by treatment. Also, serum DEB level (Na-K-Cl) increased significantly in all treatments. In conclusion, supplementation of different DEB levels beneficial effects on the thermal responses, respiratory activities and gas exchange parameters of heat exposed and the optimum DEB level is 300 meq/kg DM.

Keywords: Dietary electrolyte balance, physiological responses, metabolic rate, rams, heat stress.

INTRODUCTION

Globally, small ruminants play a major role in the economy of millions of impoverished families, especially in the developing countries such as Egypt. These animals are well adapted under different geographical and environmental conditions including extreme and harsh climates than other domesticated ruminants (Conte et al. 2018). In Egypt, sheep suffered from heat stress in summer, particularly the animals that live in hot conditions like the desert regions and Upper Egypt and that forced to walk long distances under direct solar exposure.

Nowadays, heat stress (HS) is the most concerning issue in the ever-changing climatic scenario. It poses a significant problem affecting animal performance and decreased growth, production, reproduction and increased health issues and mortality (Al-Dawood, 2017). Animals become heat-stressed when the body temperature is higher than the optimal range specified for the normal activity because the total heat load is greater than the capacity for heat dissipation (Bernabucci et al. 2010). During direct solar exposure, heat stress adversely affected some thermal responses such as rectal and skin temperature and respiratory activities and gas change (respiration rate, gas volume, tidal volume, oxygen consumption and carbon dioxide production) in addition to the disruption of metabolic rate (Abd El Khalek, 2002; Tsigos and Chrouso, 2002; Beatty et al. 2007). There are three mitigation strategies that have been identified to minimize the adverse effects of heat stress including physical modification of the environment, genetic development of heat-tolerant breeds and improved feeding and nutritional management practices (Conte et al. 2018).

Minerals are essential for almost all biological functions occurred in the animal body. These minerals are cations “positively charged” such as sodium and potassium or anions “negatively charged” such as chloride and sulfur. The concept of DEB refers to the difference between cations and anions of the diet and also it called dietary cation-anion balance (DCAB) or dietary cation-anion differences (DCAD) (Delauquis and Block, 1995). Mongin defined DEB as the equation of (Na + K) - Cl (meq/kg DM) (Mongin, 1980). During heat stress, the demand for cations (particularly Na and K) increased by the kidney. It has been reported that the excretion of Na and K was elevated by 80% and 18% under hot conditions compared to normal cooler conditions (Sanchez et al. 1994). Also, Na, K and Cl are key minerals for the maintenance of acid-base balance which is crucial to ensure normal metabolic and enzyme processes (Al-Dawood, 2017). Many studies reported that supplementation and adjustment of DEB during heat stress conditions positively affected animal productive and reproductive performance (Sanchez et al. 1994; Sanchez, 2003; El-Barody et al. 2010; Abdel Khalek et al. 2011; Hashemi et al. 2012). The optimal DEB for different ruminants or stages of production and reproduction and different environmental conditions have not yet been fully researched (Al-Dawood, 2017). Regarding sheep, few data were available about the effect of DEB supplementation and its optimum level, especially when exposed to heat stress. So, this study aimed to investigate the...
effect of different dietary electrolyte balance on physiological responses and metabolic rate of sheep exposed to heat stress conditions and to determine the optimum DEB level achieved beneficial results.

MATERIALS AND METHODS

- **Experimental animals and management**
 Twenty healthy mature Farafra rams aged 2-3 years and with average weight of 56.5 ± 1.7 kg were included in this investigation. The trial was carried out in Minia Governorate, Upper Egypt during summer season (July and August). The included rams were divided into Four equal homogenized groups according to age and weight (n=5 rams/group). Before the beginning of the experiment, feedstuffs were analyzed for chemical composition (Table 1) and for major electrolyte minerals (Na, K and Cl) and the

<table>
<thead>
<tr>
<th>Item</th>
<th>Moisture</th>
<th>OM</th>
<th>CP</th>
<th>CF</th>
<th>EE</th>
<th>NFE</th>
<th>Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrate feed mixture</td>
<td>9.3</td>
<td>92.7</td>
<td>14.6</td>
<td>15.1</td>
<td>4.9</td>
<td>58.1</td>
<td>7.3</td>
</tr>
<tr>
<td>Rice straw</td>
<td>9.1</td>
<td>84.1</td>
<td>4.0</td>
<td>33.4</td>
<td>1.6</td>
<td>45.1</td>
<td>15.9</td>
</tr>
</tbody>
</table>

Rams were housed in groups in semi-open pens and were fed according to NRC, (2007). Sodium bicarbonate was mixed well with the concentrate feed mixture before introducing to the animals. Animals were fed the experimental diets for two weeks before the beginning of the experiment as an acclimation period. Animals were weighed biweekly and the amount of feed was adjusted according body weight changes. During the experimental period, animals were exposed to direct solar radiation "under direct sun radiation". Thermal responses parameters, respiratory activities measurements and blood samples were taken before solar exposure (11-12 am) and after three hours of solar exposure (3-4 pm) to determine the cumulative effect of dietary different DEB content on thermal responses, blood parameters and respiratory activities under acute heat stress conditions.

Ambient temperature and relative humidity were recorded before and after solar exposure using the conventional methods and the temperature-humidity index (THI) was calculated according to Hahn et al. (2003): THI= [(TDB X 1.8) +32] - [(0.55 X RH/100) X (TDB X 1.8) +32]-58.

Where:

- **TDB =** Dry bulb temperature in °C.
- **RH % =** Relative humidity.

- **Thermal responses and respiratory activities**
 Rectal temperature (RT, °C) was measured by a clinical thermometer before and after sun exposure. Skin temperature (ST, °C) was measured by a portable infrared thermometer designed for temperature measurements (Radioshack company). Respiration rate (RR) was measured and expressed as the number of breaths per minute. Respiratory minute volume (GV) of exhaled air/minute was measured by Dry Gas Meters (liters). The volume of oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured with the open-circuit technique by the gas analyzer (Servomex 570). The percentages of true VO2 and VCO2 were calculated and then, the metabolic rate was calculated as follows:

\[
\text{Percentage of true VO}_2 = 0.265 (100-\% \text{VO}_2 \text{ in expired air} + \% \text{VCO}_2 \text{ in expired air})-\% \text{VO}_2 \text{ in expired air.}
\]

Table 1. Approximate analysis of the used feedstuffs.

Volume O2 consumption = GV (STPD) x % true O2/100

Percentage of true VCO2 = % VCO2 in expired air- % CO2 in inspired air.

Volume CO2 production = GV (STPD) x % true VCO2/100.

Metabolic Rate = [VO2 * (3866 + (GV adjusted to STPD * VCO2*1200)) * (1.163*60*24 / POWER (Body Weight, 0.75))/1000

Tidal volume was calculated by dividing the respiratory minute volume (GV) STPD by the respiration rate per minute. TV = GV /RR r.p.m.

- **Blood metabolites and hormones**
 A volume of 8 ml of the blood sample was collected from each ram via the jugular vein before and after solar exposure. These blood samples were divided into two parts (heparinized and non-heparinized). The heparinized blood sample was used to determine hematocrit (Ht) by micro hematocrit capillary tubes using a hematocrit centrifuge and the other non-heparinized sample was centrifuged at 3000 rpm for 15 min for serum separation, which was stored thereafter at -20°C until analyses of blood metabolites and hormones. Blood metabolites (Total protein and glucose) and electrolytes (Na, K and Cl) were measured by a colorimetric method using commercial kits. Serum triiodothyronine (T3) and thyroxine (T4) were determined by the direct radioimmunoassay (RIA) technique according to Bates (1974) and Albertini (1982), respectively.

- **Statistical analysis**
 Data were statistically analyzed using SPSS v. 21.0 for Windows (SPSS Inc., Chicago, IL). One-way ANOVA test was used and the significance among means were determined by Duncan’s New Multiple Range Test (Duncan, 1955).

RESULTS AND DISCUSSION

Regarding the metrological data during the experimental period, the mean ambient temperature before solar exposure (11-12 a.m.) was 33.7 ± 0.51 and after solar exposure (3-4 p.m.) "under direct sun" was 39.8 ± 0.62, the mean relative humidity % before solar exposure was 43.6 ± 2.5 and after solar exposure was 23.5 ± 1.32 and the mean
J. of Animal and Poultry Production, Mansoura Univ., Vol. 11 (11), November, 2020

THI before solar exposure was 88.1 ±1.4 and after solar exposure was 102.9 ± 1.2

- Thermal responses

The present results revealed that different DEB supplementation reduced rectal temperature before and after solar exposure and this reduction was significant in T3 (300 meq) compared to control before solar exposure (38.82 ± 0.05 vs. 39.20 ± 0.07) and in both T2 (300 meq) and T3 (400 meq) compared to control after solar exposure (39.58 ± 0.07 & 39.64 ± 0.10 vs. 39.92 ± 0.07). Also, a similar trend of results was noticed in skin temperature, it decreased by DEB supplementation and the obvious reduction was recorded in T2 and T3 after solar exposure. It is well documented by many authors that animal exposure to heat stress increases body temperature of (Khalifa et al. 2000; Tsigos and Chrouso, 2002). Our results are in line with those of Abdel Khalek et al. (2011), who examined the effects of different dietary DEB content on thermal responses of sheep during the summer season were 115, 246, 276, 257 and 407 meq/kg of DM. They found that DEB supplementation significantly decreased rectal and skin temperature on both rams and ewes afternoon (12-2 pm) and the best effect was in the 257 meq group. These results are in line with previous study by Coppock et al. (1982), who found that sodium bicarbonate supplementation (by 1.5% of feed DM) decreased significantly body temperature of cows during summer season. This positive effect of dietary electrolyte balance in lowering body temperature may be due to the improvement in acid-base balance and fluid balance between body tissues. In a previous study, Schneider et al. (1988) reported that electrolytes supplementation to heat-stressed dairy cows had a beneficial effect in terms of regulation of acid-base balance and lowering body temperatures.

- Respiratory activates and gas exchange parameters

Our results revealed that the respiration rate decreased (P<0.05) before solar exposure in T2 and T3 compared to the control group however after solar exposure, it decreased significantly in T1, T2 and T3 by 10.5%, 13.4% and 10.9%, respectively compared to control group. These results agreed with Abdel Khalek et al. (2011) who found that respiration rate decreased significantly (P<0.05) by DEB supplementation in sheep diet and the obvious reduction in RR was recorded in 257 meq group (14.7%). Also, similar findings were reported in cows by West et al. (1991), West et al. (1992); Jackson et al. (1992) and Ross et al. (1994), they found that increasing DEB during heat stress decreased respiration rate. In this study, altering DEB using sodium bicarbonate achieves an additional effect by insuring HCO3 besides Na ion. It has been reported that during heat stress, accelerated panting occur. Consequently blood CO2 decrease as a result, the supplementation of HCO3 ion is beneficial because it transformed to CO2 and H2O and compensates blood CO2 and the respiration rate decreases as a result of increased blood CO2. Also, HCO3 maintains buffering capacity and acid-base balance return towards normal and this also decreases respiration rate (Lunn and McGuirk, 1990). A study by Haydon et al. (1990), they found that blood HCO3 and CO2 increased linearly by increasing DEB level.

The present results indicated that gas volume per minute was slightly higher in treated groups before solar exposure. Still after solar exposure, it increased significantly in all treated groups by 22.4%, 28.3% and 23.2% in T1, T2 and T3, respectively, compared to the control group. At the same time, no significant differences were noticed among the three treated groups. Also, tidal volume was significantly higher in all treated groups before and after solar exposure. The increase in GV is attributed to the significant increase in TV. These results “increasing GV and TV” in treated animals indicate increasing respiratory evaporative heat loss and indicated that these animals suffered less from the acute heat stress than untreated ones. It has been reported that respiratory evaporation "as indicated by GV" was significantly (P<0.01) higher under heat stress to keep body temperature within the normal range by increasing evaporative heat loss (Abd El-Khalek, 2002). Also, the higher obtained TV (ml/breathe) values together with lower RR values in treated animals indicate that these animals could better regulate the respiratory efficiency and activities during heat stress. These results agreed with Abdel Khalek et al. (2011) who found that both GV and TV was significantly higher in DEB supplemented groups compared to un-supplemented and they found that DEB levels of 257 and 276 meq were the better levels.

The volume oxygen consumption (VO2), it tended to increase in treated groups before and after solar exposure "this increase was significant in 300 meq group". Simultaneously, volume carbon dioxide production (VCO2) was not affected by treatment before and after solar exposure. The increase in VO2 in treated groups was strongly attributed to the increase in TV due to DEB supplementation that could indicate that the treated animals were more tolerant. Gryg and Milligan (1982) reported that VO2 of rams decreased under heat stress conditions. Furthermore, Brosh et al. (1998) found that VO2 of goats exposed to heat stress was lower by 15% compared to non-exposed goats. These results agreed with Abdel Khalek et al. (2011) who found that DEB supplemented animals had significantly higher VO2 values compared to control ones "with no significant difference among different DEB groups", but they found a slight decrease in VCO2 values in treated animals.

- Metabolic rate

The present results revealed that the metabolic rate tended to be higher in treated groups before and after solar exposure compared to the control group (P<0.05 in T1 only). This result may be explained by DEB maintained the metabolic rate of treated animals from the reduction which actually occurs during heat stress conditions. Many authors reported that animals’ metabolic rate decreased during heat stress conditions, which was mainly due to decreasing feed intake and negative energy balance (West et al. 1992; Schrama et al. 1994 and Brosh et al. 1998). It has been reported that animals fed high DEB diets had high energy balance due to the higher dry matter intake due to the favorable effects of DEB supplementation on rumen pH (Tucker et al. 1992) and blood buffering capacity (Block, 1994). Also, Moore et al. (2000) studied the effect of altering DEB on energy metabolism of prepartum cows. They found that energy balance increased in cows fed high DEB levels. In addition, Mohammed, (2005) observed that lactating buffaloes fed high DEB diet (the source was NaHCO3) showed higher energy balance than those fed a
negative DEB diet. Dersjant et al. (2002) studied the effect of dietary 2 DEB levels (-135 and 145 meq/kg DM) on metabolic rate and heat production on piglets. They found that both the total heat production and metabolic rate tended to higher in the 145 meq group.

- Blood constituents.

The results revealed that Hematocrit values almost were not affected by treatment before solar exposure. Still after solar exposure, Ht values tended to decrease significantly in all treatments versus control. These results are in agreement with Abd El Moty et al. (2010) who reported that increasing DEB content in the sheep diets led to a significant (P<0.05) decrease in blood Ht values. This result may be attributed to sodium bicarbonate content in the diet of treated animals may increase the water intake of these animals to overcome the increase in sweating rate. Also, the higher value of blood Ht of the control group may reflect that these animals were subjected to heat stress. Kume et al. (1998) reported that blood Ht of heifers were increased by heat stress. Also, these results agreed with Kilmer et al. (1981) and Escobosa et al. (1984) who found that increasing DEB level decreased blood Ht.

Table 2. Effect of different DEB supplementation on thermal responses, respiratory activities and metabolic rate.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Treatments</th>
<th>Control (98 meq/kg of feed DM)</th>
<th>T1 (200 meq/kg of feed DM)</th>
<th>T2 (300 meq/kg of feed DM)</th>
<th>T3 (400 meq/kg of feed DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectal temperature (°C)</td>
<td>BSE</td>
<td>39.20±0.07</td>
<td>39.08±0.07</td>
<td>38.82±0.05</td>
<td>39.00±0.17</td>
</tr>
<tr>
<td></td>
<td>ASE</td>
<td>39.92±0.07</td>
<td>39.76±0.04</td>
<td>39.58±0.07</td>
<td>39.64±0.10</td>
</tr>
<tr>
<td>Skin temperature (°C)</td>
<td>BSE</td>
<td>36.22±0.47</td>
<td>34.66±0.34</td>
<td>34.46±0.58</td>
<td>34.54±0.50</td>
</tr>
<tr>
<td></td>
<td>ASE</td>
<td>38.12±0.45</td>
<td>37.22±0.26</td>
<td>35.82±0.55</td>
<td>36.2±0.44</td>
</tr>
<tr>
<td>Respiration rate (breaths / minute)</td>
<td>BSE</td>
<td>54.80±2.8</td>
<td>48.17±1.7</td>
<td>45.40±2.8</td>
<td>46.60±1.5</td>
</tr>
<tr>
<td></td>
<td>ASE</td>
<td>106.4±2.9</td>
<td>95.2±2.2</td>
<td>91.1±1.4</td>
<td>94.8±4.7</td>
</tr>
<tr>
<td>Gas volume (L/minute)</td>
<td>BSE</td>
<td>4.04±0.17</td>
<td>4.66±0.18</td>
<td>4.76±0.23</td>
<td>4.80±0.42</td>
</tr>
<tr>
<td></td>
<td>ASE</td>
<td>5.08±0.31</td>
<td>6.22±0.35</td>
<td>6.52±0.21</td>
<td>6.26±0.30</td>
</tr>
<tr>
<td>Tidal volume (ml/breathe)</td>
<td>BSE</td>
<td>74.11±2.3</td>
<td>97.4±4.4</td>
<td>106.9±10.2</td>
<td>98.5±6.7</td>
</tr>
<tr>
<td></td>
<td>ASE</td>
<td>47.9±3.4</td>
<td>65.2±2.1</td>
<td>71.1±3.0</td>
<td>66±5.1</td>
</tr>
<tr>
<td>VO₂</td>
<td>BSE</td>
<td>0.15±0.007</td>
<td>0.17±0.009</td>
<td>0.18±0.013</td>
<td>0.19±0.012</td>
</tr>
<tr>
<td></td>
<td>ASE</td>
<td>0.12±0.009</td>
<td>0.14±0.007</td>
<td>0.15±0.012</td>
<td>0.14±0.011</td>
</tr>
<tr>
<td>VCO₂</td>
<td>BSE</td>
<td>0.16±0.011</td>
<td>0.17±0.014</td>
<td>0.16±0.010</td>
<td>0.18±0.016</td>
</tr>
<tr>
<td></td>
<td>ASE</td>
<td>0.15±0.015</td>
<td>0.15±0.008</td>
<td>0.16±0.013</td>
<td>0.16±0.010</td>
</tr>
<tr>
<td>Metabolic rate (Kcal/day)</td>
<td>BSE</td>
<td>67.4±3.8</td>
<td>75.2±3.1</td>
<td>78.4±2.7</td>
<td>76.9±3.9</td>
</tr>
<tr>
<td></td>
<td>ASE</td>
<td>64.4±2.1</td>
<td>69.4±1.7</td>
<td>70.4±1.7</td>
<td>69.6±1.6</td>
</tr>
</tbody>
</table>

Means in the same row with different superscripts are significantly different (P<0.05).

The serum glucose level was higher (P<0.05) after solar exposure by 16.6%, 22.5% and 23.9% in T1, T2 and T3, respectively as compared to the control group. Also, a similar trend of results was recorded in serum total protein level, it recorded a significant increase by treatment. This increase was obvious after solar exposure compared to before solar exposure. These results are in agreement with Abd El Moty et al. (2010) who found that serum glucose and total protein levels were significantly higher in DEB supplemented groups than in un-supplemented control. They found that DEB levels of 257 and 276 meq had the higher glucose and total protein levels. These results may be explained by that DEB maintained blood glucose level of the treated groups from reduction compared to control and the higher metabolic rate in treated groups which reflects positive energy balance. Escobosa et al. (1984) found that dietary sodium bicarbonate during heat stress increased blood glucose level of cows and they reported that this increase may be due to higher feed intake in high sodium bicarbonate group. Li et al. (2013) found that increasing DEB level in rabbits’ diet (up to 500 meq) increased feed intake, N metabolism and blood total protein. It has been reported that blood proteins play a basic role of intracellular buffers within the body tissues to provide a reserve buffering capacity (Cunningham, 2002) and this is indicated that increasing blood total protein concentrations by DEB supplementation had a beneficial effect on acid-base balance. Furthermore, the increase in TP levels by BEB supplementation may be attributed to the beneficial effect of sodium bicarbonate on crude protein digestibility coefficients which was reported by many authors (Hashemi et al., 2012; Al-Dawood, 2017).

Concerning serum major electrolyte minerals, serum Na level tended to increase in the treated groups before and after solar exposure (P<0.05 in T3). However, serum K recorded a slight increase and serum CI recorded a slight decrease in all treatments compared to control before and after solar exposure. Blood DEB (Na+K+Cl) was significantly higher in all treated groups before and after solar exposure (P<0.01) with no significant difference among treated groups. These results are in agreement with Abd El Moty et al. (2010) who found that serum NA and DEB increased significantly (P<0.05) by increasing DEB in sheep diet. While, they found that serum K concentration recorded a significant elevation and serum CI recorded a significant reduction by DEB supplementation.

Regarding the results of Na in the current study, these results are expected because of the supplementation of sodium bicarbonate led to an increase in circulating blood sodium concentrations and it has a beneficial effect to compensate the loss of sodium ion through kidney during heat stress conditions (Sanchez et al. 1994). Also, increasing blood DEB of the treated groups in this study was expected due to increasing serum Na in these groups (the main part of the equation) and it had a positive role in regulating acid-base balance especially during heat stress conditions (Sanchez et al. 1994, Sanchez, 2003, El-Barody et al. 2010; Hashemi et al. 2012). Also, Haydon et al. (1990) and West et al. (1992) found similar results as regards Na, K and DEB. Holly (2002) reported that increasing dietary cations “like
Na and K” during heat stress is a common practice and the goal should be a higher DEB and higher levels of these key minerals to compensate the high loss. It has been reported that the loss of HCO₃⁻ may cause a relative increase in blood Cl (Escobosa et al. 1984) and this means that treated animals in our study avoided this problem.

The results of the effect of different DEB levels on thyroid hormones (T3 and T4) are presented in Table (3). The current results revealed that DEB supplementation caused a slight insignificant increase in these hormones in both before and after solar exposure. These results agreed with Abd El-Moty et al. (2010) who found that increasing DEB level in sheep diets during heat stress slightly increased both serum T3 and T4. Also, these results are in a harmony with Vicini et al. (1987) who found that supplementation of 2% sodium bicarbonate in dairy cows’ diet caused an insignificant increase in thyroid hormones concentration. Besides, these results agreed with Cheirecato et al. (2003) on rabbits and Rizzi et al. (2004) on bucks. The slight increase in thyroid hormones in the treated group may be correlated with the high metabolic rate in these groups as it has been reported that there was a positive relationship between energy intake and the concentrations of the thyroid hormones (Tiirates, 1997; Ahmed, 2003).

Table 3. Effect of different DEB supplementation on blood constituents.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control (98 meq)</th>
<th>T₁ (200 meq)</th>
<th>T₂ (300 meq)</th>
<th>T₃ (400 meq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSE</td>
<td>31.60 ± 1.81</td>
<td>29.40 ± 0.51</td>
<td>30.80 ± 0.58</td>
<td>29.60 ± 0.75</td>
</tr>
<tr>
<td>ASE</td>
<td>34.20 ± 0.66</td>
<td>31.00 ± 0.55</td>
<td>30.00 ± 1.10</td>
<td>30.80 ± 1.07</td>
</tr>
<tr>
<td>Glucose (md/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSE</td>
<td>61.0 ± 3.52</td>
<td>69.6 ± 3.66</td>
<td>69.2 ± 3.62</td>
<td>70.8 ± 2.31</td>
</tr>
<tr>
<td>ASE</td>
<td>54.2 ± 3.18</td>
<td>63.2 ± 1.93</td>
<td>66.4 ± 3.41</td>
<td>67.2 ± 2.65</td>
</tr>
<tr>
<td>Total Protein (g/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSE</td>
<td>5.58 ± 0.36</td>
<td>6.16 ± 0.39</td>
<td>6.33 ± 0.36</td>
<td>6.46 ± 0.25</td>
</tr>
<tr>
<td>ASE</td>
<td>5.14 ± 0.28</td>
<td>5.72 ± 0.19</td>
<td>6.04 ± 0.29</td>
<td>5.98 ± 0.29</td>
</tr>
<tr>
<td>Sodium (mEq/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSE</td>
<td>134.4 ± 3.49</td>
<td>145.4 ± 3.79</td>
<td>147.2 ± 4.26</td>
<td>150.4 ± 5.36</td>
</tr>
<tr>
<td>ASE</td>
<td>129.8 ± 4.01</td>
<td>141.2 ± 3.02</td>
<td>142.0 ± 3.90</td>
<td>145.8 ± 6.34</td>
</tr>
<tr>
<td>Potassium (mEq/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSE</td>
<td>5.16 ± 0.13</td>
<td>5.30 ± 0.14</td>
<td>5.48 ± 0.16</td>
<td>5.40 ± 0.19</td>
</tr>
<tr>
<td>ASE</td>
<td>5.06 ± 0.14</td>
<td>5.24 ± 0.12</td>
<td>5.44 ± 0.12</td>
<td>5.32 ± 0.15</td>
</tr>
<tr>
<td>Chloride (mEq/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSE</td>
<td>96.6 ± 3.81</td>
<td>92.0 ± 2.50</td>
<td>92.60 ± 2.66</td>
<td>91.00 ± 2.88</td>
</tr>
<tr>
<td>ASE</td>
<td>91.6 ± 2.03</td>
<td>88.21 ± 1.52</td>
<td>85.8 ± 2.08</td>
<td>89.40 ± 3.80</td>
</tr>
<tr>
<td>DEB (mEq/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSE</td>
<td>42.9 ± 4.54</td>
<td>58.7 ± 5.37</td>
<td>60.1 ± 5.24</td>
<td>64.8 ± 6.34</td>
</tr>
<tr>
<td>ASE</td>
<td>43.3 ± 4.43</td>
<td>59.4 ± 4.10</td>
<td>61.6 ± 3.40</td>
<td>61.7 ± 6.44</td>
</tr>
<tr>
<td>Triiodothyronine (ng/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSE</td>
<td>4.71 ± 0.31</td>
<td>5.04 ± 0.33</td>
<td>5.15 ± 0.33</td>
<td>5.10 ± 0.22</td>
</tr>
<tr>
<td>ASE</td>
<td>4.50 ± 0.34</td>
<td>4.83 ± 0.19</td>
<td>5.08 ± 0.43</td>
<td>5.12 ± 0.19</td>
</tr>
<tr>
<td>Thyroxin (µg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSE</td>
<td>79.5 ± 5.01</td>
<td>85.1 ± 2.66</td>
<td>85.3 ± 6.99</td>
<td>82.7 ± 3.25</td>
</tr>
<tr>
<td>ASE</td>
<td>74.1 ± 6.42</td>
<td>77.3 ± 3.04</td>
<td>81.3 ± 6.83</td>
<td>80.5 ± 4.00</td>
</tr>
</tbody>
</table>

CONCLUSION

In conclusion, the current results revealed that supplementation of different DEB levels had a beneficial effect on the thermal responses and respiratory activities and gas exchange parameters of heat exposed rams in terms of reducing rectal and skin temperatures accompanied with maintaining gas and tidal volumes, VO₂ and metabolic rate in addition to regulating blood buffering capacity and acid-base balance by providing chef electrolyte minerals. All of these factors alleviated the adverse effects of heat stress on the animal. Also, the study revealed that the optimum DEB level is 300 meq/kg DM "by the addition of 1.48% sodium bicarbonate”.

REFERENCES

تثير استخدام مستويات مختلفة من التوازن الإلكترونلتي على الأداء الفسيولوجي ومعدل الميكروبيون لدى الكباش المعرضة للإجهاد الحراري

أيمن عربي خليل صالح، جمال فؤاد عبد الحليم، وعبد الرحمن إبراهيم زنوت

1- قسم الامراض الحيوانية، كلية الزراعة، جامعة المنهاج
2- قسم لإنتاج الحيوان، معهد بحوث الإنتاج الحيواني، جلبوع، جبل لبنان
3- قسم الإنتاج الحيواني، كلية الزراعة، جامعة الأزهر، الجبل

تهدف هذه الدراسة إلى تقييم استخدام مستويات مختلفة من التوازن الإلكترونلتي (M: C) على الأداء الفسيولوجي ومعدل الميكروبيون لدى الكباش المعرضة للإجهاد الحراري. يشمل ذلك: مستويات مختلفة من التوازن الإلكترونلتي بالإضافة إلى مصدر الكالسيوم (تم استخدام مادة جافة للكالسيوم بكميات مختلفة).

النتائج:

1. ارتفاع مستويات الكلور في الدم (الصوديوم + البوتاسيوم) بين مجموعات المعاملة الأولى (M: C 1) والثانية (M: C 2) والثالثة (M: C 3) مقارنة بال?('M: C 4) مجموعة الضابطة، وكان هذا الارتفاع معنوي في ت (P<0.05) لجميع المراحل.
2. انخفاض معدل التنفس في المجموعات المعاملة الثلاثة مقارنة بالكنترول قبل وبعد التعرض للشمس، وكان هذا الانخفاض معنوي بمقدار T (P<0.05) لجميع المراحل.
3. انخفاض معدل الميكروبيون للكباش في المجموعات المعاملة الثلاثة مقارنة بالكنترول، وكان هذا الانخفاض معنوي بمقدار T (P<0.05) لجميع المراحل.

النتيجة:

إن استخدام مستويات مختلفة من التوازن الإلكترونلتي (M: C) على الأداء الفسيولوجي ومعدل الميكروبيون لدى الكباش المعرضة للإجهاد الحراري له تأثيرات إيجابية على الأداء الفسيولوجي والميكروبيون. ويمكن استخدام هذه النتائج في تطوير نظم إدارة الصناعات الحيوانية لتحقيق الأداء المثلى.

ال Исكلات: تأثير استخدام مستويات مختلفة من التوازن الإلكترونلتي (M: C) على الأداء الفسيولوجي ومعدل الميكروبيون لدى الكباش المعرضة للإجهاد الحراري

