EFFECT OF FEEDING DIFFERENT LEVELS OF CORN SILAGE ON MILK COMPOSITION OF FRIESIAN COWS.
Mohi El-Din, A. M. A. and Manal A. Naeim
Animal Production Research Institute, Agricultural Research Center, Egypt

ABSTRACT

Eighteen lactating Friesian cows at different lactation seasons were taken one month pre-partum and divided into 3 similar groups. (G1) control was fed 25% corn silage (CS) on DM basis, (G2) was fed 50% corn silage and (G3) was fed 75% corn silage. Results showed that silage fermentation characteristics (pH, TVFA, ammonia nitrogen (NH3-N) and fractions of VFAs) were almost within the normal ranges reported for good quality silage. Also, it was indicated that increasing level of CS in rations significantly (P<0.05) increased pH and decreased VFAs and NH3-N in rumen liquor. Cows in G3 showed the highest average daily milk yield (ADMY) followed by G2 and G1 at all lactation periods. Maximum ADMY was observed between 30 and 60 days of lactation period in all groups. Milk fat content showed inconsistent trend in all groups and showed the maximum fat content at 60 days of lactation period. Protein content showed the highest values at the beginning of lactation, thereafter decreased in all groups. Lactose content was almost higher in G3 and G2, than G1 at all lactation times. As a results of increasing fat, protein and lactose contents in milk in G2 and G3 total, solids content was higher in G3 and G2, respectively at all lactation times. Total concentrations of TVFA, NCN, NPN were significantly not affected by feeding treatments.

Keywords: Friesian cows, corn silage, rumen function, milk composition.

INTRODUCTION

Corn plant is one of the main crops in Egypt. About 1.5 to 2 millions feddan (Zedan, 1998) are cultivated annually with corn plant. Recently, use of maize silage has rapidly increased as forage for dairy cattle in Egypt. This increase can be related to the relatively high energy yield of maize crop and ease of mechanization with which the whole plant can be ensiled to provide highly palatable source of energy and high quality forage (Mohamed et al., 1999). Several studies used corn silage and corn stalks without and with additives, El-Mufeed, protein sources and enzymes (Zedan, 1998; Sheperd and Kung, 1996; Overton et al., 1998 and Nofsger et al., 2000) were carried out to study effects on milk production and composition.

The present work was conducted to study the effect of using corn silage at different levels in rations of lactating cows on gross chemical composition and nitrogen distribution of the milk.

MATERIALS AND METHODS

This experiment was carried out at Sakha Animal Production Research Station, Animal Production Research Institute, Agricultural Research Center.
Eighteen lactating Friesian cows at different lactation seasons were taken one month pre-partum and were divided into 3 similar groups. All groups were fed according to NRC (1989). The first group (G1) was fed 11.65 kg concentrate feed mixture (CFM), 1.5 kg berseem hay (BH) and 11.4 kg corn silage (CS, about 25% on DM basis) and was considered as a control. Cows in the 2nd group were fed 7.3 kg CFM, 1.5 kg BH and 22.8 kg CS (50% on DM basis), while the 3rd one was fed 4.18 kg CFM and 32.3 kg CS (75% on DM basis).

Calculated chemical composition of different rations fed to lactating cows is presented in Table (1).

Table (1): Calculated chemical composition of different experimental rations.

<table>
<thead>
<tr>
<th>Item</th>
<th>DM%</th>
<th>Chemical composition (%) on DM basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OM</td>
</tr>
<tr>
<td>G1 (25% CS)</td>
<td>65.09</td>
<td>92.05</td>
</tr>
<tr>
<td>G2 (50% CS)</td>
<td>50.79</td>
<td>92.02</td>
</tr>
<tr>
<td>G3 (75% CS)</td>
<td>41.56</td>
<td>92.41</td>
</tr>
</tbody>
</table>

Rations were offered twice daily at 8.0 a.m. and 3.0 p.m. and water was offered all day times. Cows were milked twice daily at 6.00 and 18.00 h by milking machine and milk production was daily recorded. Monthly milk samples were taken for determining approximate chemical analysis, using MilkoScan (Model 133 B). Total nitrogen content (TN) was determined using semi-micro Kjeldahl method, meanwhile total solids (TS) and ash contents were measured according to Ling (1963). The method of Kosikowski (1978) was used for determination of total volatile fatty acids (TFVA). The \( N \) distribution was done as recommended by Rowland (1938). Non-casein nitrogen (NCN) was determined in the collected filtrate after precipitation of casein by means of acetic acid and sodium acetate at pH 4.6. Non-protein nitrogen (NPN) was measured in clear filtrate after precipitation of protein by TCA (15%). Non-Protein nitrogen and albumin (NPN + AL) was measured by adding \( \text{Na}_2\text{SO}_4 \) (20 g/100 ml) to precipitate the casein, albumin and protease peptone. Concentration of NPN+AL was determined in filtrate. Casein nitrogen (CN), whey protein nitrogen (WPN) and albumin nitrogen (ALN) were quantified by the difference as reported by Rowland (1938) as follows:

\[
CN = \text{Total } N - \text{NCN} \\
WPN = \text{NCN} - \text{NPN} \\
ALN = \left( \text{NPN} + \text{AL} \right) - \text{NPN}
\]

Chemical analysis using methods of A.O.A.C. (1980) was performed on representative samples from all experimental feedstuffs. Values of pH in silage were determined using digital pH-meter. Concentration of total VFAs and individual VFAs including lactic, acetic and butyric acids were determined using high performance liquid chromatography (Model Knauer).
Rumen liquor samples were collected from 3 animals in each group, 4 hours post feeding. Rumen pH values were determined immediately after samples collection using digital pH-meter. Concentration of ammonia-nitrogen was determined by the method described by Conway (1957), whereas, TVFA were determined by steam distillation method as described by Warner (1964).

Statistical analysis was carried out using general linear procedure of SAS (1996) according to Steel and Torrie (1984). Group mean differences were tested using least significant differences (Duncan, 1955).

RESULTS AND DISCUSSION

Silage characteristics:

Different fermentation characteristics of corn silage shown in Table (2) revealed that pH value, concentrations of lactic, acetic, butyric and propionic acids as well as concentration of TVFA and NH3-N in silage juice were almost within the normal ranges reported for good quality silage as reported in the literature as shown in Table (2). Good quality silage is characterized by high lactic acid concentration. Soluble carbohydrates are the major source of lactic acid in the silage (Zedan, 1998).

Table (2): Fermentation characteristics of corn silage compared to those reported by different authors.

<table>
<thead>
<tr>
<th>Item</th>
<th>CS</th>
<th>Good quality silage</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>VFAs (%) on DM basis:</strong></td>
<td></td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Lactic</td>
<td>5.63</td>
<td>2.8-8.57</td>
<td>Buttrey <em>et al.</em> (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>McDonald <em>et al.</em> (1995)</td>
</tr>
<tr>
<td>Acetic</td>
<td>2.86</td>
<td>0.93-3.67</td>
<td>Chen <em>et al.</em> (1994)</td>
</tr>
<tr>
<td>Butyric</td>
<td>0.43</td>
<td>0.07-1.45</td>
<td>Stokes and Chen (1994)</td>
</tr>
<tr>
<td>Propionic</td>
<td>0.17</td>
<td>0.03-0.48</td>
<td>Etman <em>et al.</em> (1994)</td>
</tr>
<tr>
<td>Total</td>
<td>3.52</td>
<td>1.22-3.54</td>
<td>Etman <em>et al.</em> (1994)</td>
</tr>
<tr>
<td>NH3-N (%)</td>
<td>0.19</td>
<td>0.08-0.22</td>
<td>Sheperd and Kung (1996)</td>
</tr>
<tr>
<td>PH value</td>
<td>4.3</td>
<td>%4.5</td>
<td>Hellberg (1963)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flynn (1981) and Pitt (1990)</td>
</tr>
</tbody>
</table>

The volatile substances in the good silage must be comparatively less than lactic acid concentration (Ranjhan, 1980). The poor quality silage is generally associated with high level of ammonia, which may indicate considerable breakdown of amino acids into more soluble products (Bakr, 1995).

Rumen function:

Rumen parameters including pH, concentration of VFAs and NH3-N of lactating cow fed experimental rations are shown in Table (3).

Results indicated that increasing level of CS in the rations significantly (P<0.05) increased pH value and decreased concentration of VFAs and NH3-
N in rumen liquor. The differences between rations containing 50 and 75% CS were almost significant (P<0.05), being higher in 50% than 75% for concentration of VFAs and NH₃-N, however, pH values showed the opposite trend.

The significant reduction in VFAs concentration by increasing CS level might be due to the increase of lactic acid production. This was observed in rumen liquor of cows fed rations containing different levels of CS (Etman et al., 1986; Hussein and Berger, 1995; Taie et al., 1998 and Mehany, 1999). Also, this was in relation to increasing level of roughages and decreasing level of CFM (Taie et al., 1998 and Mehany, 1999).

Table (3): Average values of rumen parameters of lactating cows fed different levels of corn silage.

<table>
<thead>
<tr>
<th>Rumen parameter</th>
<th>Experimental group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1</td>
</tr>
<tr>
<td>pH value</td>
<td>6.21ᵇ</td>
</tr>
<tr>
<td>NH₃-N mg/100 ml</td>
<td>13.45ᵃ</td>
</tr>
<tr>
<td>Total VFAs mEq/100 ml</td>
<td>16.68ᵃ</td>
</tr>
</tbody>
</table>

a, b and c: Group means with different superscripts are significantly different at P<0.05.

On the other hand, the significant reduction in NH₃-N concentration may be due to the higher degradability of dietary protein in CFM than in CS. This was associated with the lower concentration of NH₃-N in CS (Table 2).

Concentration of VFAs in rumen liquor of cows in all groups was associated with reversible trend of ruminal pH value (Table 3). Russell and Dombrowski (1980) reported that ruminal VFAs production was closely related to ruminal pH which can be an important regulator of microbial yield.

Milk yield:

Table (4) shows that the differences in average daily milk yield (ADMY) among experimental groups were significant (P<0.05), being higher by about 112.7 and 115% in G2 and G3, respectively, than in the control group.
Table (4): Milk production and milk composition of cows fed different levels of corn silage.

<table>
<thead>
<tr>
<th>Item</th>
<th>Experimental group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1</td>
</tr>
<tr>
<td>Average daily milk yield (kg)</td>
<td>16.94^a</td>
</tr>
</tbody>
</table>
| Milk composition (%):
| Fat                | 3.76     | 3.91     | 4.00     |
| Protein            | 3.09     | 3.02     | 3.03     |
| Lactose            | 4.86^a   | 5.08^a   | 5.27^a   |
| TS                 | 13.82^a  | 13.90^a  | 14.04^a  |
| SNF                | 10.05    | 9.98     | 10.10    |
| Ash                | 0.74     | 0.75     | 0.77     |

Concentration (mg/100 ml):
- Total volatile fatty acid: 3.53, 3.75, 3.93
- Non-casein nitrogen: 130.65, 153.35, 153.99
- Non-protein nitrogen: 71.7, 79.6, 78.14

a and b, Group means with different superscripts are significantly different at P<0.05.

Fig. (1): Changes in daily milk yield of cows in experimental groups at different lactation days.
Concerning the changes in ADMY at different lactation periods in all experimental groups, it was observed that cows in G3 showed almost the highest ADMY, followed by those in G2. Meanwhile, cows in the control group showed the lowest ADMY at all lactation periods. Maximum ADMY was observed between 30 and 60 days of lactation period in all groups (Fig. 1). Superiority of cows fed CS rations than the control group is in agreement with the results of Keys et al. (1984); Bakr et al. (1998); Overton et al. (1998) and Noftsger et al. (2000).

**Milk composition:**

Percentages of milk fat showed marked increase by increasing level of CS in the rations of lactating cows, but the differences among groups did not reach significant level (P<0.05, Table 4). At different lactation periods, milk fat content showed inconsistent trend in all groups, although all groups showed the minimum values on 30 days lactation (Fig. 2).

Percentage of milk protein did not differ significantly among experimental groups ranging between 3.02-3.09% (Table 4). In all experimental groups, protein content showed the highest values at 0 day, thereafter decreased to the lowest values at 30 days of lactation period, but was always higher in control group than G2 and G3 during the 1st month of lactation period. The opposite was observed during late lactation period (90-120 days) (Fig. 2).

Percentage of lactose was significantly (P<0.05) different among experimental groups, being higher in G3, followed by G2 and G1, respectively. The differences were significant only between G1 and G3. (Table 4) At all lactation times, lactose content was the highest in G3, followed by G2, while those in G1 showed the lowest values, the highest lactose values were observed at 60 days of lactation period in all groups (Fig. 2).

As a result of increasing fat, protein and lactose contents in milk of cows in G2 and G3, total solids (TS) contents were significantly (P<0.05) higher in G3 than in G1 and G2 (Table 4). It is of interest to note that TS content showed similar trend of changes at all lactation times to those occurred in fat and protein contents in all groups (Fig. 2). The observed variation in TS content due to feeding treatments agrees with the results given by Overton et al. (1998) and Noftsger et al. (2000).

According to the changes in fat and TS contents in all groups, solids not fat (SNF) content did not differ significantly among experimental groups (Table 4). Content of SNF showed opposite trend to that occurred in fat and TS contents in all groups (Fig. 2).
Figure (2): Changes in milk composition of cows in different experimental groups at successive lactation days
Overall means of total concentration of volatile fatty acids (TVFAs), non-casein nitrogen (NCN) and non-protein nitrogen (NPN) were not affected significantly by feeding treatments (Table 4).

All experimental groups showed nearly similar trends of TVFA and NPN concentration at all lactation times. However, increasing level of CS to 50 and 75% resulted in marked increase at early stage (0-60 days) and pronounced decrease at late stage of lactation (60-120 days) in NCN concentration as compared to the control group (Fig. 2).

In general, the effect of interaction of treatment with lactation time on concentration of fat, protein, lactose, TS, SNF, TVFA, NPN and NCN was not significant.

Nitrogen distribution:

Results presented in Table (5) revealed that different fractions of nitrogen and total content of nitrogen were not affected significantly by CS in rations of the experimental groups.

In spite the insignificant differences among lactating, cows fed on 50% (G2) and 75% (G3) resulted in tendency of lower casein nitrogen concentration and higher concentration of whey protein nitrogen and albumin nitrogen than those in the control group (G1). However casein nitrogen content, in turn total nitrogen content tended to be higher in control milk than those in G2 and G3 (Table 5).

The recorded nitrogen distribution agrees with the finding of several authors (Keys et al., 1984; Bakr et al., 1998 and Nootsger et al., 2000) observed the same trend of results when they used different feeding treatments for lactating cows.

Table (5): Effect of feeding treatments on nitrogen distribution (mg/100 ml) in milk.

<table>
<thead>
<tr>
<th>Properties</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein nitrogen</td>
<td>353.68</td>
<td>320.0</td>
<td>320.93</td>
</tr>
<tr>
<td>Whey protein nitrogen</td>
<td>58.95</td>
<td>73.75</td>
<td>75.85</td>
</tr>
<tr>
<td>Albumin nitrogen</td>
<td>55.03</td>
<td>61.05</td>
<td>61.85</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>484.33</td>
<td>473.35</td>
<td>474.92</td>
</tr>
</tbody>
</table>

Generally, the influences of diet composition on milk protein is small relative to other environmental and genetic influences, and diet mainly induces changes in milk yield and protein content that are often different in direction depending on stage of lactation (Depeters and Cont, 1992).

It could be concluded that replacement of CFM by different levels of CS in rations of lactating cows at a rate of 50 or 75% could be increase average daily milk yield without any reversible effects on milk composition, especially nitrogen distribution.

2378
REFERENCES


تأثير التغذية بمستويات مختلفة من سيلاج الأذرة على تركيب لين الأبقار الفريزيان

عبد الحليم محمد عبد السلام بحي الدين و منال علمنعهد بحوث الإنتاج الحيواني - مركز البحوث الزراعية - وزارة الزراعة

استخدم في هذه الدراسة 48 بقرة فريزيان حديثة في مواسم حليب مختلفة، وقسمت إلى سبعة مجموعات تحتوي علاقاتها على سيلاج الأذرة بكميات مختلفة، وذلك عل أساس المادة الحاضرة، والأولى غذت على علبة تحتوي على 25% سيلاج أذرة، والثانية غذت على علبة تحتوي على 50% سيلاج أذرة، والثالثة غذت على علبة تحتوي على 75% سيلاج أذرة، وأظهرت النتائج أن:

* السليار المستخدم ذات صفات جيدة حيث أن قيم الرقم الهيدروجيني PH وتركيز الأحماض الدهنية الطيارة الكلية قدرة وكذلك تركيز الأمونيا كانت في المعدلات الطبيعية للسليار الجيد
* ارتفاع مستوي سليار الأذرة في المبيض إلى ارتفاع الرقم الهيدروجيني PH معنوية، بينما انخفض تركيز كل من الأحماض الدهنية الطيارة والأمونيا في سائل الكرش
* أظهرت المعالمة الثالثة (75% سليار أذرة) أعلى متوسط لمحمول اللين اليومي، تلتها المجموعتان الثانية والأولى، وكان أعلى متوسط لمحمول اللين خلال 10 يوماً من الحالة في كل المجموعات.

سجل محتوى اللين من الدهن في كل المعالمات أعلى محتوى عند اليوم 60 من الحالة، وكذلك محتوى اللين من البروتين كان مرتفعا في بداية الحليب وانخفض بعد النقطة.

* أظهر محتوى اللين من اللاكتوز ارتفاعا في المجموعة الثالثة ثم تلاه الثانية والأولى، وذلك في كل قيرات الحليب، وکنتيجة لارتفاع الدهن والبروتين واللاكتوز في المجموعة الثالثة والثانية، عن الأولى ارتفعت المادة الصلبة الكلية خلال قيرات الحليب المختلفة.
* لم يؤثر كل من تركيز الأحماض الدهنية الطيارة والبروتين غير الكاذبي والنيتروجين غير البروتيني في اللين معنوية نتيجة المعالمات المختلفة.

- من ذلك يمكن القول أن استخدام 50% أو 75% سيلاج الأذرة على أساس المادة الحالية في علاقة هيئة اللين يزيد محتوى اللين اليومي دون أي تغيير في تركيب اللين الكيميائي.

2381