NEW APPROACH FOR USING HEART GIRTH FOR CALCULATING ENERGY REQUIREMENTS:
3- FOR FATTENING FRIESIAN CROSSBRED MALE CALVES.
Salama, A.M.A.; S.A. Ibrahim, A.M. El-Gaafarawy and E.A. Omar.
Animal Production Research Institute, Agricultural Research Center,
Ministry of Agriculture, Dokki, Giza, Egypt.

ABSTARCT

Twenty male Friesian crossbred calves of 180 kg average live body weight (LBW) were divided into four groups. Animals were fed according to NRC (1984) allowances (T_1), animal heart girth (HG)x0.028 (T_2), animal (HG)x0.032 (T_3)and animal (HG)x 0.034 (T_4). The average daily gain in T_4 was significantly higher than T_2 and non significantly higher than T_1 and T_3 . The fourth treatment was economically more efficient as well as in feed conversion than the other treatments with no significant differences among them. Every cm of HG in T_4 (The best treatment in average daily gain, feed conversion and economic efficiency) required 0.055, 0.048, 0.006, 0.025 and 0.033 kg from DM, OM, CP, SE and TDN, respectively. Also, the results showed that every kg of DM, OM, CP, SE and TDN in T_4 was consumed by the following numbers of cm of animal HG: 18.0, 21.0, 162.9, 39.6 and 30.2, respectively. Therefore, the nutrient requirements of male Friesian crossbred calves can be predictied from the following equations:-

DM requirement (kg) = Animal HG x 0.055 OM requirement (kg) = Animal HG x 0.048 CP requirement (kg) = Animal HGx0.006 SE requirement (kg) = Animal HG x 0.025 TDN requirement (kg)= Animal HG x 0.033

Or:

DM requirement (kg) = Animal HG / 18.0 OM requirement (kg) = Animal HG / 21.0 CP requirement (kg) = Animal HG / 162.9 SE requirement (kg) = Animal HG / 39.6 TDN requirement (kg)= Animal HG / 30.2

The results of this study showed that the small holder can use the following equations to obtain the feed quantity for male Friesian crossbred calves which fed concentrate feed mixture (CFM), berseem hay and rice straw:-

The requirement of CFM (kg) = Animal HG x 0.042 or Animal HG/26.1,

The requirement of berseem hay (kg)=Animal HG x 0.0094 or Animal HG/106.7,

and The requirement of rice straw (kg) = Animal HG x 0.013 or Animal HG/76.6 Roughage:concentrate ratio will be 0.60:0.40 by using the previous equations. **Keywords:** Friesian calves, heart girth, nutrition requirements.

INTRODUCTION

Many investigators studied the relationship between animal heart girth (HG) and its weight (Johnsson and Hildeman, 1954, Abdellah and Rashed, 1981 and Salama and Schaller, 1992). Kidewell (1955) found a high correlation between live weight and heart girth. Vas and Vas (1967) reported

that heart girth can be considered as a suitable measurement to estimate the live weight more than the other body measurements. Salama (2002) found a new relationship between animal HG and its nutrient requirement. By this relationship, the energy requirement of an animal can be calculated without converting animal HG to weight and without using nutrition Tables.

MATERIALS AND METHODS

The animals in this study were fed according to Salama (2002) method. This method is based on multiplication the animal HG (cm) by a constant (Factor) to obtain the energy requirement of the animal. Salama et al. (2001) suggested the prediction following equations to calculat the energy requirement for fattening Friesian calves:-

TDN requirement (kg) = Animal HG x 0.028 TDN requirement (kg) = Animal HG x 0.032 TDN requirement (kg) = Animal HG x 0.034

In the present study, the previous equations were tested to calculate

the energy requirement for Friesian crossbred calves.

Twenty male Friesian crossbred calves of 180.45 kg as an average live body weight (LBW) were divided according to LBW into four similar groups. Animals of group (1) were fed according to NRC (1984) allowances (control group), animals of group (2), (3) and (4) received their energy requirements (expressed as TDN) according to the previously mentioned equations. The animals in all groups were fed individually. Animals TDN requirements were adjusted monthly either according to the animal HG (for groups 2, 3 and 4) or its weight (for the control group). The animals initial weight and its HG are shown in Table (1). The proximate analysis of feedstuffs is shown in Table (2). Components of the rations are shown in Table(3). Animals were weighed every two weeks and HG was measured monthly. The experiment lasted eight months. Average daily gain (ADG), feed conversion and economic efficiency were calculated in the first and the second period for four months each.

Tiple.		(5) 43		1004				i male Fi	12	at the second	0.7 64.89				minA
10 40 40	T4	I M minA	minA	HGx0.032	s.minA	.minA	oN minA	HG×0.028	Anim. HG	Anim. Wt.	minA .oM	(kg TDN)	-	Anim. Wt. (kg)	No.
HGx0.034		Anim. Wt. (kg)	No.	(kg TDN)	HG (cm)	Wt. (kg)		(KG LDN)	(cm)	270 (kg)	9	60.4	148	252	1
(kg TDN)	137 (cm)	500	91	68.4	121	270	11	4.25	152	017					100
97.A	041	215	21	Sp.4	139	210	12	3.64	130	500		75.5	131	210	7
35.A	128	081	81	17.8	911	130	13	88.6	128	PZL	8	75.5	138	902	3
4.25	125	021	61	06.5	122	150	Þl	£8.E	126	160	6	2.70	811	ttl	Þ
			00	82.6	811	041	91	3.00	107	100	10	2.70	100	16	9
3.84	113	137	50	87.6	2.00	10.000	The state of the state of the		128.6	8.081		1	127	9.081	uea
	129.2	P.081	177	1	129.2	0.081		TATE SHOW		1	T	A STATE OF THE STA			

Table (2): Proximate analysis (%) of the feedstuffs used and

chemme	illai la	LIONS	on ar	y matte	er Dasi	S).		
DM	OM	CP	EE	CF	NFE	Ash	TDN**	SE**
91.00	86.60	14.30	3.10	12.36	56.84	13.40	65.00	55.00
91.40	88.00	11.60	1.90	28.50	46.00	12.00	48.00	32.00
90.70	88.18	1.30	1.28	31.14	54.56	11.82	36.00	21.00
91.00	87.80	10.76	2.43	19.60	54.33	12.77	55.20	42.97
92.60	87.30	10.93	2.47	19.40	54.37	12.79	55.53	43.35
90.98	87.17	10.94	2.48	19.20	54.51	12.80	55.71	43.60
90.99	87.15	11.02	2.49	19.03	54.56	12.83	55.92	43.87
	91.00 91.40 90.70 91.00 92.60 90.98	DM OM 91.00 86.60 91.40 88.00 90.70 88.18 91.00 87.80 92.60 87.30 90.98 87.17	DM OM CP 91.00 86.60 14.30 91.40 88.00 11.60 90.70 88.18 1.30 91.00 87.80 10.76 92.60 87.30 10.93 90.98 87.17 10.94	DM OM CP EE 91.00 86.60 14.30 3.10 91.40 88.00 11.60 1.90 90.70 88.18 1.30 1.28 91.00 87.80 10.76 2.43 92.60 87.30 10.93 2.47 90.98 87.17 10.94 2.48	DM OM CP EE CF 91.00 86.60 14.30 3.10 12.36 91.40 88.00 11.60 1.90 28.50 90.70 88.18 1.30 1.28 31.14 91.00 87.80 10.76 2.43 19.60 92.60 87.30 10.93 2.47 19.40 90.98 87.17 10.94 2.48 19.20	DM OM CP EE CF NFE 91.00 86.60 14.30 3.10 12.36 56.84 91.40 88.00 11.60 1.90 28.50 46.00 90.70 88.18 1.30 1.28 31.14 54.56 91.00 87.80 10.76 2.43 19.60 54.33 92.60 87.30 10.93 2.47 19.40 54.37 90.98 87.17 10.94 2.48 19.20 54.51	91.00 86.60 14.30 3.10 12.36 56.84 13.40 91.40 88.00 11.60 1.90 28.50 46.00 12.00 90.70 88.18 1.30 1.28 31.14 54.56 11.82 91.00 87.80 10.76 2.43 19.60 54.33 12.77 92.60 87.30 10.93 2.47 19.40 54.37 12.79 90.98 87.17 10.94 2.48 19.20 54.51 12.80	DM OM CP EE CF NFE Ash TDN** 91.00 86.60 14.30 3.10 12.36 56.84 13.40 65.00 91.40 88.00 11.60 1.90 28.50 46.00 12.00 48.00 90.70 88.18 1.30 1.28 31.14 54.56 11.82 36.00 91.00 87.80 10.76 2.43 19.60 54.33 12.77 55.20 92.60 87.30 10.93 2.47 19.40 54.37 12.79 55.53

^{*}CFM = concentrate feed mixture consisted of undecorticated cotton seed cake 35%, coarse wheat bran 20%, Yellow corn 17%, rice bran 25%, salt 1% and lime stone 2%.

** SE and TDN of feedstuffs cited from Salama et al. (2001).

Table (3): Composition of the rations (%).

Ingredients	T ₁	T ₂	T ₃	T ₄
CFM	58.9	60.0	61.2	62.1
Berseem hay	17.8	17.8	16.4	16.1
Rice straw	23.3	22.2	22.4	21.8

Feedstuffs were analyzed for moisture, ash, crude protein, crude fiber and ether extract according to A.O.A.C (1990). Nitrogen free extract was calculated by differences.

Statistical analysis was applied as repeated measure to the following model:

$$Y_{ijk} = \mu + t_i + an_k(t)_i + p_j + (txp)_{ij} + e_{ijk}$$

T_{ijk} = Observation of parameters.

μ = Overall mean.

t_i = Effect of treastments, i =1 to 4.

 $an_k(t)_i = Animal$ effect with treatment.

 $P_j = Effect of period, j = 1 to 2.$

(txP)_{ij} = Effect of interaction between treatment and period.

eijk = The random error.

In applying to the previous model, SAS (1987) procedure was used.

RESULTS AND DISCUSSION

Data in Table (4) showed that ADG in P_1 in T_4 (Factor of 0.034) was significantly higher than T_1 and T_2 (Factor of 0.028) but non significantly higher than T_3 (Factor of 0.032) while in P_2 , no significant differences were observed among tratments Also, Table (4) showed no significant differences among treatments in DMI, OMI, CPI, SEI, TDNI/kg gain and economic

efficiency in P1 and P2.

Table (5) showed that the average daily gain in T_4 was significantly higher than T_2 and non significantly higher than T_1 and T_3 . Also, T_4 was not significantly by higher than the other treatments in average daily HG. With regard to DMI, OMI, CPI, SEI and TDNI/kg gain, data of Table (5) indicated that T_4 was more efficient than other treatments with no significant differences among them. It could be noticed that the highest economic efficiency was recorded for T_4 . Values of economic efficiency calculated as a ratio between price of the weight gain and the cost of feed consumed. Salama (2002) fed male Baladi calves on four levels of SE: T_1 control (Shehata allowances, 1976), T_2 : Animal HGx0.032, T_3 : Animal HGx0.034 and T_4 : Animal HGx0.036. The results showed that T_2 was the best level in feed conversion and economic efficiency.

Salama et al. (2001) fed male Friesian calves on four levels of TDN: T_1 : control (NRC allowances), T_2 : Animal HGx0.028, T_3 : Animal HGx0.032 and T_4 : Animal HGx0.034. The results indicated that T_3 was the best level in feed conversion and economic efficiency. Results of Table (5) indicated that the average of HG gain in P_1 was not significantly higher than P_2 . The economic efficiency and feed conversion (expressed as DMI, OMI, CPI, SEI and TDNI/kg gain) in P_1 were significantly better than in P_2 . This may be due to the increase in animal requirements offered as a result of increasing both

live body weight and animal HG.

Table (4): Average daily gain, feed conversion and economic efficiency of the experimental groups of animals through two periods

(P).	Periods	
Treatments	P ₁	P ₂
-	Initial weight (kg)
Ţ ₁	180.6 a	291.0 b
T ₂	180.8°	285.0° 297.0°
T ₃	180.0 a 180.4 a	307.0°
T ₄	Final weight (kg)	
T ₁	291.0 b	410.0 b
T ₂	285.5	388 4
T ₃	297.8°	408.4
T ₄	307.0°	445.0°
A REPORTED THE MARKET	Average daily gain	(kg)
<u>T</u> 1	0.920 ^{bc}	0.991 a
T ₂	0.868°	0.861
T ₃	0.981 ^{ab} 1.058 ^a	0.921 ^a 1.146 ^a
T ₄	DMI/kg gain	1.140
T ₁	7.809 a	10.297 a
T ₂	8.067ª	9.360 a
T ₃	8.163 ª	10.018 a
T ₄	7.944 a	8.987ª
	OMI/kg gain	
T ₁	6.856°	9.040 ^a
<u>T</u> ₂	7.042 a	8.171 a
T ₃	7.115 a	8.732 a
T ₄	6.923 a	7.832 a
T ₁	0.866 a CPI/kg gain	1.145 ª
T ₂	0.898 a	1.054 a
T ₃	0.913	1.118 a
T ₄	0.891 a	1.000 a
	SE/kg gain	
T ₁	3.548 "	4.68 a
T ₂	3.689 a	4.313 °
T ₃	3.750°	4.573 ª
T ₄	3.649 a	4.092 a
-	TDN/kg gain	c 777 a
T ₁	4.378 a	5.777 ^a
T ₂ T ₃	4.540 ^a 4.608 ^a	5.294 ^a 5.634 ^a
T ₄	4.006 4.484 ^a	5.046 a
1.4	Economic efficient	CV
T ₁	1.7 a	1.4ª
T ₂	1.7ª	15°
T ₃	1.7 a	1.4°
T ₄	1.8 a	1.5 a

a, b and c mean of different letters in the same column are significantly different (P<0.05.

Table (5): Average daily gain, feed conversion and economic efficiency

er-plant teller		Trea	tment	Ara - Tipa	Per	riods
	T ₁	T ₂	T ₃	T ₄	P ₁	P ₂
ADG (kg)	0.955±0.049at	0.865±0.049 ⁵	0.951±0.049 ^{at}	1.102±0.049°	0.957±0.032°	0.980±0.032
Daily HG gain (cm)	0.219±0.016°				0:220±0.007°	
DMI/kg gain (kg)	8.790±1.205°	8.783±1.475°	9.157±1.205°	8.524±1.475°	7.954±0.396°	9.673±0.396ª
OMI/kg gain (kg)	7.717±1.010°	7.667±1.237°	7.982±1.010°	7.428±1.237°	6.943±0.332 ^b	8.444±0.332°
CPI/kg gain (kg)	0.976±0.132°	0.985±0.161°	1.025±0.132°	0.953±0.161ª	0.891±0.043°	1.079±0.043°
SEI/kg gain (kg)	3.994±0.538ª	4.040±0.658ª	4.196±0.538ª	3.899±0.658°	3.648±0.179b	4.416±0.179ª
TDNI/kg gain (kg)	4.939±0.668ª	4.962±0.819°	5.162±0.668ª	4.800±0.819°	4.486±0.221 ^b	5.440±0.221°
Economic efficiency	1.6±1.321 ^b	1.6±1.321 ^b	1.5±1.190°	1.7±1.340°	1.7±0.134 ^b	1.5±1.291ª

a and b mean of different letters in the same raw are significantly different (P<0.05)*. The assumption that the price of one ton of CFM, berseem hay and rice straw 540, 380 and 60 L.E. respectively, and the price of one kg body weight on selling was 7.5 L.E.

Table (6) showed how much of nutrients consumed for each cm of animal HG (kg/cm). It was calculated by dividing each of DMI, OMI, CPI, SEI and TDNI on animal HG. Also, Table (6) showed how many of cm of animal HG meet each kg of feed consumption (cm/kg) by dividing animal HG on DMI, OMI, CPI, SEI and TDNI. The values of T_4 (the most economic treatments as shown in Table 5) from these nutrients were: 0.055, 0.048, 0.006, 0.025 and 0.033 kg/cm respectivly and 18.0, 21.0, 162.9, 39.6 and 30.2 cm/kg respectively.

Therefore, the following equations was calculated to predict the nutrient requirements of male crossbred calves:-

DM requirement (kg) = Animal HG x 0.055
OM requirement (kg) = Animal HG x 0.048
CP requirement (kg) = Animal HGx0.006
SE requirement (kg) = Animal HG x 0.025
TDN requirement (kg) = Animal HG x 0.033
DM requirement (kg) = Animal HG / 18.0
OM requirement (kg) = Animal HG / 21.0
CP requirement (kg) = Animal HG / 162.9
SE requirement (kg) = Animal HG / 39.6
TDN requirement (kg) = Animal HG / 30.2

Or:

Table (6) showed that DMI, OMI, CPI, SEI and TDNI/cm HG in T_2 were significantly lower than the other treatments that may be due to the energy requirement of T_2 was calculated based on the lowest factor (0.028). Also, Table (6) showed that DMI, OMI, CPI, SEI and TDNI/cm HG in T_2 were significantly higher than P_1 that may be possibly related to the increase in animal requirements as a result of increasing animal HG.

Table (7) showed that DMI, OMI, CPI, SEI and TDNI/cm HG of T_3 and T_4 in P_1 were higher than the other treatments. This may by due to the quantities of ration of T_3 and T_4 which were higher than the other treatments.

The average daily intake from CFM, berseem hay and rice straw are shown in Table (8). If the daily intakes of CFM, berseem hay and rice straw were divided on animal HG, then the quantity of these rations which consumed by one cm of animal HG will be obtained, therefore, the following equation could be used to calculate the intake of ration:-

The intake of ration = Animal HG x quantity of this ration which is required for each cm of animal HG.

By using the opposite approach, i.e. if the animal HG was divided on the intake of CFM, hay and rice straw, the numbers of cm of animal HG/kg of ration will be obtained, therefore, the following equation could be used to caculate the intake of ration:-

The intake of ration = Animal HG/numbers of cm of HG per kg ration

All these calculations for dietary ingredients throught the while experimental periods are shown in Tables (9) and (10). Tables (9) and (10) showed that DMI, OMI, CPI, SEI and TDN/ cm HG in T_4 were higher than T_2 and T_3 that may be due to the energy requirement of T_4 was calculated based on the highest factor (0.034). Also, Tables (9) and (10) showed that DMI, OMI, CPI, SEI and TDN/cm HG in P_2 were higher than P_1 that because of the increasing in animal requirements as a result of increasing animal HG. The results of Table (5) showed that T_4 was the best treatment because it was the highest in ADG, the more efficient in feed conversion and the highest in economic efficiency, therefore, the values of T_4 in Table (9) could be used to make the following equations to be used for determining the requirements of crossbred Friesian calves in small farms which do not have a balance and their animals are fed the previous feed only:

The requirements of CFM (kg) = Animal HG \times 0.042. The requirements of berseem hay (kg) = Animal HG \times 0.0094. The requirements of rice straw (kg) = Animal HG \times 0.013.

Or, the following equations:-

The requirements of CFM (kg) = Animal HG / 26.1.

The requirements of berseem hay (kg) = Animal HG / 106.7.

The requirements of rice straw (kg) = Animal HG / 76.6.

The roughage: concentrate ratio will be around 0.40:0:60, by using the previous equations.

Table (6): Effect of treatments and periods on feed consumption by cm of animal HG (kg cm), and numbers of cm of HG per kg nutrients (cm/kg),

0 1110 10 0		Total Control of the		Treatment		ltem
100	Periods	•7	£T	şŢ	ıT	
P ₂	0-050±0.0001 ^b	€7000.0±880.0	° 5000.0±420.0	^d 7000,0±080.0	° 8000.0±880.0	MI/cm HG(kg/cm)
0.058±0.0001	*1000.0±00	⁶ 8000,0±8₽0.0	⁶ №000.0±7№0.0	d 3000,0±440.0	⁶ 4000.0±640.0)MI/cm HG(kg/cm)
6 1000.0±020.0	d 1000.0±≯₽O- 0	0000.01640.0	+000.011+0.0	0000'0±440'0	+000.010+0.0	(mayby)ou magnate
	0-005±0.00002 b	⁶ 80000,±800.0	⁶ 70000.0±300.0	^d 80000,0±800.0	⁶ 70000.0±800.0	CPI/cm HG(kg/cm)
° S0000.0±900.0	-OE0:00002°	6000.0±850.0	⁶ S000.0±3S0.0	d £000,0±£≦0,0	6 2000.0±620.0	SEI\cm HG(kg\cm)
° 1000.0±820.0	O.O22±0.0001 b				5 50 2 18 1 1	
	O.028±0.0001 b	°£000.0±€£0.0	° £0000.0±1€0.0	d 4000,0±8≦0,0	° £000.0±1€0.0	TDMI\cm HG(kg\cm)
₽ 1000.0±4£0.0		^d 0£S.0±0.81	d 881.0±č.81	* 085,0±6,81	^d 881.0±7.71	Anim.HG/DMI(cm/kg)
^d ≤60.0±1.71	° ≤0.0±0.05			1. 华沙维第4	The second of the second	
^d 270.0±0.0S	83.2±0.075 ⁸	d 87≦.0±0.₹2	21.5±0.226 b	° 87⊈.0±1,82	21.0±0.226	Anim.HG/OMI(cm/kg)
	⁶ 893.0±4.08 ^Γ	4852.2±8.231	d 728.1±6.231	179,1±2,238°	^d 728.1±1.6∂1	Anim.HG/CPI(cm/kg)
152.7±0.668 b	The second secon	96₹0∓9'6€	40.3±0.404 b	6 394,0±3,6£4	d 404.0±8.8£	Anim.HG/SEI(cm/kg)
37.3±0.157 ^b	€731.0±9.£₽					
	35.6±0.1118	30.2±0.404 b	^d 62£.0±8.0£	° 404.0±4.3€	^d 662£.0±∂.1€	Anim.HG/TDMI(cm/kg)
29.3±0.111 ^b		-	di fferent (P<0.05).	aw are significantly	letters in the same r	a and b mean of different

Table (7): Relationships between animal HG and nutrients requirements as affected by dietary treatments and experimental

perio	ds. Perio	ds	Perio	ds
Treatments	P ₁	P ₂	P ₁	P ₂
Treatments	DMI/cm HC	G(kg/cm)	Animal HG/D	MI (cm/kg)
T ₁	0.051 bc	0.056 b	19.6 ab	18.8 ^{ab}
T2	0.049°	0.0490	S00g	20.12
T ₃	0.056 ab	0.056 b	17.6 bc	17.7 bc
T ₄	0.059 a	0.060 a	16.6°	16.4°
	OMI/cm	HG(kg/cm)		/OMI (cm/kg)
T ₁	0.043 bc	0.047 b	23.5 ab	21.6 b
T ₂	0.041 °	0.041 c	23.9ª	24.1 a
T ₃	0.047 ab	0.047 b	21.0 bc	21.2 b
T ₄	0.050°	0.051 a	19.9°	19.5°
	CPI/cm F	IG(kg/cm)		/CPI (cm/kg)
T ₁	0.0057 b	0.0061 b	177.2 ab	162.4 b
T ₂	0.0055 b	0.0055°	180.1 a	179.1ª
T ₃	0.0063 a	0.0062 b	157.0 bc	158.8 b
T ₄	0.0067 a	0.0067 a	148.6 °	147.5°
	SEI/cm H	G(kg/cm)	Animal HG/	SEI (cm/kg)
T ₁	0.023 b	0.025 b	43.2 ª	39.7 b
T ₂	0.022 b	0.022 c	43.8 a	43.7 a
T ₃	0.026 a	0.025 b	38.3 b	38.8 b
T ₄	0.027 a	0.027 a	36.3 b	36.0 °
	TDNI/cm H	IG(kg/cm)	Animal HG/T	
T ₁	0.0288 °	0.0311 b	33.1 ab	32.2 b
T ₂	0.0280°	0.0280°	35.6 ª	35.6 ª
T ₃	0.0320 ab	0.0317 b	31.2°	31.5 b
T ₄	0.0330 a	0.0342 a	29.5 °	29.2°

a, b and c mean of different letters in the same column are significantly different (P<0.05).

J. Agric. Sci. Mansoura Univ., 27 (2), February, 2002

Table (8): Average daily intake (kg) from CFM, berseem hay and rice straw.

Items	T ₁	T ₂	T ₃	T ₄
Av. Animal wt. (kg)	273	277	280	290
Av. Animal HG.(cm)	147	148	148	150
Av. Daily feed intake as fed (kg)		1000		
CFM	5.8	5.5	6.0	6.5
Berseem hay	1.5	1.2	1.4	1.5
Rice straw	1.8	1.8	1.8	2.0
Av. Daily DMI (Kg)	8.28	8.50	8.36	9.099

Table (9): Rations consumption by cm of animal HG (kg/cm) and numbers of cm of animal HG per kg of rations ingredients

(cm/kg) through out two experimental periods. Periods Periods Treatments Pt Pa P Pa CFMI/Anim.HG(kg/cm) Animal HG/CFMI (cm/kg) Tt 0.035 28.4ª 0.038 26.2 b 0.034 b Tz 0.035 28.7° 28.4ª 0.040 a T₃ 0.039 b 24.9 b 25.5 b 0.042ª 23.6 b T4 0.042 a 23.8° Hay intake/Anim.HG(kg/cm) Animal HG/Hay intake (cm/kg) 0.0090 a 0.0099 a T₁ 101.5 b 114.8 0.0082 a 0.0081 b T₂ 122.4ª 121.4 0.0094ª Ta 0.0098 a 101.4 b 105.6 T₄ 0.0100 a 0.0107ª 92.7b 99.3 Rice straw Animal HG/Rice straw intake intake/Anim.HG(kg/cm) (cm/kg) 0.012 ab 83.9 ab T 0.012 78.2 b 0.011 T₂ 0.011° 85.6ª 90.5ª T_3 0.012 ab 0.012 77.9 ab 77.2 cb TA 0.0133 0.014 738b 70.7°

a, b and c mean of different letters in the same column are significantly different (P<0.05).

CONCLUSION

The results of this experiment showed the possibility of using the animal HG as an indicator to determine the animal requirements of DM, OM, CP, SE and TDN according the following equation:-

DM requirement (kg) = Animal HG x 0.055 OM requirement (kg) = Animal HG x 0.048 CP requirement (kg) = Animal HGx0.006 SE requirement (kg) = Animal HG x 0.025 TDN requirement (kg)= Animal HG x 0.033

Or, the following equations to obtain the same results:-

DM requirement (kg) = Animal HG / 18.0 OM requirement (kg) = Animal HG / 21.0 CP requirement (kg) = Animal HG / 162.9 SE requirement (kg) = Animal HG / 39.6 TDN requirement (kg)= Animal HG / 30.2

To make the calculation more easy, the following equations could be used (calculated by dividing each of CFM, berseem hay and rice straw intakes on animal HG through the whole experimental period) when the animals fed the same feedstuffs:

The requirements of CFM (kg) = Animal HG x 0.042. The requirements of berseem hay (kg) = Animal HG x 0.0094. The requirements of rice straw (kg) = Animal HG x 0.013.

Also, the following equations could be used (calculated by dividing animal HG on each of CFM, berseem hay and rice straw intake through the whole experimental period):-

The requirements of CFM (kg) = Animal HG / 26.1.

The requirements of berseem hay (kg) = Animal HG / 106.7.

The requirements of rice straw(kg) = Animal HG / 76.6.

J. Agric. Sci. Mansoura Univ., 27 (2), February, 2002

		Treatment	nent		Don	- Porto
	ř	T,	-		1	Spoular
CFMI/Anim HG (kg/cm)	0 036+0 001ab	9.000	13	14	P ₁	Р,
	0.030±0.00	0.035±0.001	0.039±0.001 ab	0.042±0.001ª	0.038±0.0002 a	0.039±0.0002 a
Hay intake/Anim.HG (kg/cm)	0.0099±0.0002	0.0099±0.0002ª 0.0082±0.0002 ^b 0.0089±0.0002 ^{ab} 0.0094±.0002 ^{ab} 0.008±0.0001 ^b	0.0089±0.0002ªb	0.0094±.0002 ^{ab}	0.008±0.0001 b	0.009±0.0001 a
Rice straw/Anim.HG (kg/cm)	0.012±0.0002 ab	0.011±0.0002 ^b	0.012±0.0002 ab	0.013±.0002ª	0.012±0.0002 ab 0.013±.0002° 0.011±0.0001 b	0.013±0.0001 ª
Anim.HG/CFMI(cm/kg)	25.6±2.280 b	28.4±0.343ª	26.2±0.280 ^b	26.1±0.343 ^b	28.8±0.185ª	24.3±0.185 ^b
Anim.HG/Hay intake(cm/kg)	101.4±2.499 b	123.4±3.061 a	112.8±2.499 ab 106.7±3.061 b	106.7±3.061 b	119.9±1.587 a	102.2±1.587 ^b
Anim.HG/Rice straw intake(cm/kg)	77.7±1.475 ab	85.8±1.807 a	81.9±1.475 ab	76.6±1.807 b	85 4+1 0er a	

REFERENCES

- Abdellah, O.Y. and S.M. Rashed (1981). Studies on the estimation of live weight of cattle and Buffaloes. III- Stepwise procedure used in estimating live weight of Egyptian Buffaloes from body measurements. Ain Shams Univ. Fac. Bull, No. 1566.
- A.O.A.C. (1990). Association of Official Agricultural Chemists. Official Methods of Analysis, 15th Ed.
- Johnsson and Hildeman (1954). The relationships between certain body measurements and live slaughter weight in cattle. A.B.A., 32:1.
- Kidewell, J.F.(1955). A study of the relation between body conformation and carcass quality in fat calves. J. Anim. Sci., 14:233-242.
- NRC (1984). Nutrient Requirements of Beef Cattle (6th Ed). National Research Cowncil. National Academy Press, Washongton. DC.
- Salama, M.A.M. and R.R. Schaller (1992). Growth of water buffalo, Bubalus Arenec. Top. Agric (Trindad) 69(3).
- Salama, A.M.A.; E.A. Omar; A.M. El-Gaafarawy and S.A. Ibrahim (2001).

 New approach for using heart girth for calculating nutrient requirements. 2- For fattening Friesian calves. Egyptian, J. of Nutrition and Feeds. Vol. 4 (Special Issue). Proceeding of The 8th Scientific Conference on Animal Nutrition, Part (1) Ruminants, 439-451.
- Salama. A.M.A. (2002). New approach for using heart girth for calculating nutrient requirements, 1- For fattening male Baladi calves. Egypt, J. Nutr. and Feeds. (in press).
- SAS (1987). SAS User's Guide. SAS Institute Inc., Cary, NC.
- Shehata O. (1976). Lectures in animal production. Anim. Prod. Dept. Fac. Agric., Ain Shams Univ., Cairo, Egypt.
- Vas, M.P.M. and H. Vas (1967). Estimation of the live weight of cattle from body measurements. Trjdschr-Diergeneesk, 92:1073-1081. [J. Nut. Abs. and Rev. (1968), 38:3683].

مفهوم جديد لاستخدام محيط الصدر في حساب الاحتياجات الغذائية ٣- لتسمين عجول الفريزيان الخليط أحمد محمد أحمد سلامة- سمير على إبراهيم- أحمد محمد الجعفراوي- الشافعي عبد وزارة الزراعة- معهد بحوث الإنتاج الحيواني- الدقي- الجيزة- مصر

أجريت هذه التجربة بهدف حساب الاحتياجات الغذائية للعجول باستخدام محيط صدر الحيوان وذلك بدون معرفة وزن الحيوان وبدون تحويل محيط الصدر الى وزن وأيضا بدون فتح جداول التغذية. استخدم في هذه التجربة ٢٠ عجلاً خليط فريزيان وتم تقسيمهم الى أربعة مجاميع بمتوسط وزن ١٨٠كجم وتم

*المجموعة الاولى: وتغذت تبعا لمقررات الـ NRC (عل أساس وزن الحيوان).

المجموعة الثانية: وتحسب احتياجاتها من الـ TDN بالكيلو جرام على أساس المعادلة:- محيط الصدر X ۲۸

المجموعة الثالثة: وتحسب احتياجاتها من الـ TDN بالكيلو جرام على أساس المعادلة:- محيط الصدر X ۲۲۰۰۰.

المحموعة الرابعة: وتحسب احتياجاتها من الـ TDN بالكيلو جرام على أساس المعادلة:- محيط الصدر X ٤٣٠٠٠ .

أوضحت نتائج التجربة أن معدلات النمو اليومي في المجموعة الرابعة كانت أعلى معنويا من المجموعة الثانية وأعلى بفرق غير معنوى من المجموعة الاولى والثالثة كذلك تفوقت المجموعــة الرابعــة (بدرجة غير معنوية) على بقية المجاميع في كل من كفاءة التحويل الغذائي والكفاءة الاقتصادية. كذلك فإنه يمكن استخدام بيانات المجموعة الرابعة في حساب الاحتياجات الغذائية لتسمين العجول خليط الفريزيان وذلك كما بلي:-

الاحتياج من المادة الجافة (كجم) = محيط الصدر X ٠٠٠٥٠

الاحتياج من المادة العضوية (كجم) = محيط الصدر X ٨٤٠٠٠

الاحتياج من البروتين الخام (كجم) = محيط الصدر X ٢٠٠٠٠

الاحتياج من معادل النشا (كجم) = محيط الصدر × ٢٥٠٠٠.

الاحتياج من الـ TDN (كجم) = محيط الصدر X ٢٣٠٠٠.

ويمكن أيضًا استخدام المعادلات التالية للحصول على نفس النتائج المتحصل عليها من المعادلات السابقة:-الاحتياج من المادة الجافة (كجم) = محيط الصدر / ١٨

الاحتياج من المادة العضوية (كجم) = محيط الصدر / ٢١

الاحتياج من البروتين الخام (كجم) = محيط الصدر / ١٦٢,٩ الاحتياج من معادل الـنشـــا (كجم) = محيط الصدر / ٣٩,٦

الاحتياج من الــــ TDN (كجم) = محيط الصدر / ٢٠,٢ ولتسهيل استخدام هذه المعادلات للمربى الصغير فقد أوضحت نتائج البحث أنه يمكسن استخدام

المعادلات التالية ليحصل على نفس نتائج المعادلات السابقة وذلك في حالة تغذّية الحيوانسات علسي الثلاثسة علائق المستخدمة في هذه البحث وهم العلف المركز والدريس والقش.

الاحتياجات من العلف المركز (كجم) = محيط الصدر × ٢٠٠٠ أو محيط الصدر / ٢٦,١

الاحتياجات من دريس البرسيم (كجم) = محيط الصدر × ١٠٠٠، أو محيط الصدر / ١٠٠٠ ١

الاحتياجات من قصة الارز (كجم) = مديط الصدر ١٠١٣ ، أو مديط الصدر / ٧٦,٦ وعند استخدام هذه المعادلات الاخيرة في التسمين تكون نسبة المواد المركزة: المـــواد الخشــنة هــي .% : . : 7 .