THE EFFECT OF DIETARY SUPPLEMENTATION WITH COPPER SULPHATE OR COPPER CHLORIDE ON LOCAL MAMOURAH STRAIN LAYING HENS:

2- EFFECT OF DIETARY COPPER SOURCE AND CONCENTRATION ON TOTAL LIPIDS, YOLK AND PLASMA CHOLESTEROL OF LAYING HENS.

El-Awady, Nadia I.; Eman, A. Abo-Etta and M. E. Nofal Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt

#### **ABSTRACT**

An experiment was conducted to test the hypothesis that pharmacological levels of dietary copper could reduce egg cholesterol content. Local Mamourah strain hens 36 weeks of age were fed corn and soybean meal diets with 0, 500, 750 and 1000 mg/kg diet as copper sulphate (CuSO<sub>4</sub>. 5 H<sub>2</sub>O) and copper chloride (CuCl<sub>2</sub>. 2 H<sub>2</sub>O). At the end of experimental periods (28 and 56 days, respectively) three eggs per group were randomly taken to determine yolk cholesterol and total lipids. **Results obtained were as follows**:

 A significant (P<0.05) decrease in blood hemoglobin value (Hb) was observed at 500 mg/kg diet of copper source during the two experimental periods. Hb value was not affected by changing the dietary Cu source.

A negative decrease in Cu plasma concentration was observed for different levels

and sources of copper.

Increasing dietary copper from zero to 1000 mg/kg diet the amount of cholesterol
in plasma and yolk decreased linearly (P<0.05) and numerically. Levels at 750
and 1000 mg/kg diet decreased the plasma and yolk cholesterol by about 7.52,
19.40, 20.62 and 30.92%, respectively, during 8 weeks of experimental period.</li>

Copper supplementation positively affected plasma total lipids.

 Yolk lipids could be lowered substantially (15.78%) by the addition of 1000 mg/kg diet when compared with control group.

 Liver weight per unit body weight was depressed for 500 and 750 mg /kg diet of copper source.

Cu concentration in the liver increased for all dietary levels.

These results suggested feed pharmacological levels and sources of copper to laying hens will produce some physiological responses depending on the strain type and duration of feeding.

Keywords: Copper, laying hens, lipids, cholesterol

#### INTRODUCTION

A series of experiments were conducted to confirm of results of feeding pharmacological levels of copper to broiler chicken. Bakalli et al., (1995); Pesti and Bakalli (1996) and Konjufca et al., (1997) observed changes in lipid metabolism and a reduction in plasma and meat cholesterol concentration of young broiler chickens due to adding pharmacological levels of cupric sulphate pentahydrate or cupric citrate to the diet. Pearce et al., (1983) demonstrated that pharmacological levels of Cu (>250 mg/kg diet)

caused changes in  $17\beta$ —estradiol and enzymes involved in carbohydrate, lipid and amino acid metabolism in mature laying hens. Their data suggested that copper supplements can affect reproductive physiology and lipid metabolism beyond changes simply due to reduced feed intake. Copper supplements decreased plasma lipid,  $17\beta$ —estradiol and liver lipid concentrations and hepatic lipogenic enzyme activities. Mean liver glycolytic and amino acid metabolizing enzyme activities were affected by dietary copper additions.

The purpose of the study was to determine pharmacological levels of copper in laying hen diets and their effect on plasma and egg cholesterol.

### MATERIALS AND METHODS

The experimental birds, design, management and statistical analysis were explained in the first part (El-Awady, et al., 2002). At the end of experimental periods (28 and 56 days, respectively) three eggs per group were randomly taken to determine yolk cholesterol and total lipids. Eggs were placed in boiling water for 5 minutes. After cooling to room temperature, the yolk were separated from albumin and frozen at –20 °C. The yolk samples were thoroughly mixed and 0.5g was transferred to a conical-bottom centrifuge tube and extracted by the chloroform: methanol according to the method of Folch et al., (1957) as modified by Washburn and Nix (1974). The filtrate was then analysed for cholesterol and total lipids by using a commercial kit of labkit (Plato, 6 E 08021 Barcelona, Spain).

Blood samples were withdrawn from the wing vein of 3 hens per group before the start and at biweekly intervals (28 and 56 days) by using heparinized syringe. Hemoglobin value was immediately determined. The rest of blood samples was then immediately centrifuged at 3000 rpm for 10 minutes to separate plasma. Plasma samples were stored, frozen at –20 °C until assayed for cholesterol, total lipids and copper. Plasma cholesterol and total lipids concentrations were assayed by a colorimetric method using the commercial kits of labkit. Plasma copper content was assayed by using an atomic absorption sepectrophotometry apparatus. A slaughter test was operated on 3 hens per group to determine liver copper concentration.

## RESULTS AND DISCUSSION

Blood hemoglobin value (Hb) of hens fed 500 mg/kg diet significantly (P<0.05) decreased (Table 1) during the two experimental periods (4 and 8 weeks) while Hb value was not significantly affected by the two higher levels during the first and second experimental periods. Cu sources did not affect Hb value. No significant differences in plasma Cu among supplemental Cu sources and levels were obtained in this study during the two experimental periods. Results recorded higher plasma Cu values at 8 weeks of experimental period than at 4 weeks of the experiment. There was no significant difference in plasma and yolk cholesterol content due to levels,

sources of Cu and their interaction between factors during first 4 weeks of experimental period.

Table (1): Blood hemoglobin (Hb), plasma Cu, plasma cholesterol, plasma lipid, yolk cholesterol and yolk total lipid of laying hens given control and Cu supplemented diet at 28 days.

| globin                | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Plasma<br>cholesterol<br>mg/dl                                                                                                                                                             | total lipid<br>g/dl                                                                                                                                                                                                                                                                                                   | Yolk<br>cholestero<br>mg/g | Yolk total<br>lipid g/g<br>yolk |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|
| atments               | at 28 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s as range (I                                                                                                                                                                              | pasal diet)                                                                                                                                                                                                                                                                                                           |                            |                                 |
| -                     | 0.05±0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       | 7.3±1.4                    | 0.29±0.04                       |
|                       | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to                                                                                                                                                                                         | to                                                                                                                                                                                                                                                                                                                    | to                         | to                              |
|                       | 0.15±0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143.0±4.5                                                                                                                                                                                  | 4.8±0.51                                                                                                                                                                                                                                                                                                              | 32.0±10.8                  | 0.41±0.01                       |
| ment at               | 28 days :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |                            |                                 |
| vels mg/              | kg diet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            | E Lande                                                                                                                                                                                                                                                                                                               | With the same              | 140                             |
| 8.5±0.3 <sup>a</sup>  | 0.05±0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112.5±13.7                                                                                                                                                                                 | 2.6±0.57 <sup>b</sup>                                                                                                                                                                                                                                                                                                 | 14.9±2.2                   | 0.38±0.01 <sup>a</sup>          |
| 7.3±0.3 <sup>b</sup>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 115.2±11.5                                                                                                                                                                                 | 3.0±0.47 <sup>ab</sup>                                                                                                                                                                                                                                                                                                |                            | 0.36±0.01ab                     |
| 7.9±0.2ab             | 0.09±0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91.4±7.8                                                                                                                                                                                   | 3.7±0.43 <sup>ab</sup>                                                                                                                                                                                                                                                                                                |                            | 0.38±0.01 <sup>a</sup>          |
| 7.8±0.4 <sup>ab</sup> | 0.11±0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102.3±5.6                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       |                            | 0.32±0.02 b                     |
| source:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |                            |                                 |
| 3.0±0.3               | 0.12±0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101.9±7.2                                                                                                                                                                                  | 3.4±0.37                                                                                                                                                                                                                                                                                                              | 13.6±1.9                   | 0.37±0.01                       |
| .6±0.2                | 0.08±0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.7±7.6                                                                                                                                                                                  | 3.3±0.37                                                                                                                                                                                                                                                                                                              | 12.9±1.8                   | 0.35±0.01                       |
| ns:                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |                            |                                 |
| ng/kg:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |                            |                                 |
|                       | 0.05±0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125.4±5.4                                                                                                                                                                                  | 3.5±0.87 <sup>ab</sup>                                                                                                                                                                                                                                                                                                | 14.9±1.9                   | 0.41+0.01 <sup>a</sup>          |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                            | 2.0±0.24 <sup>bc</sup>                                                                                                                                                                                                                                                                                                | 5.5±1.5 (                  |                                 |
| ±0.3ªb (              | 0.12±0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |                            |                                 |
| 1±0.2 <sup>b</sup> (  | 0.16±0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.4±9.9                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                       |                            |                                 |
| ng/kg:                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |                            |                                 |
| ±0.1 ab               | 0.05±0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.5±27.4                                                                                                                                                                                  | 1.7±0.37°                                                                                                                                                                                                                                                                                                             | 15.0±4.5                   | 0.35±0.01 <sup>ab</sup>         |
|                       | 0.15±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |                            |                                 |
| ±0.2ªb (              | 0.06±0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |                            |                                 |
|                       | 0.06±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |                            |                                 |
|                       | ns: ng/kg: b±0.1 <sup>a</sup> (b±0.2 <sup>b</sup> (b±0.1 <sup>ab</sup> (b±0.2 <sup>b</sup> (b±0.1 <sup>ab</sup> (b±0.1 <sup>ab</sup> (b±0.2 <sup>ab</sup> (b±0.1 <sup>ab</sup> (b±0 | ng/kg:  150.1° 0.05±0.00  150.1° 0.17±0.02  150.3° 0.12±0.02  150.2° 0.16±0.04  160.1° 0.05±0.00  150.1° 0.05±0.00  150.1° 0.05±0.00  150.2° 0.06±0.03  150.2° 0.06±0.03  150.1° 0.06±0.01 | ng/kg:  125.4±5.4  13±0.7 <sup>b</sup> 0.17±0.02 110.6±17.2  15±0.3 <sup>ab</sup> 0.12±0.02 77.1±8.8  15±0.2 <sup>b</sup> 0.16±0.04 94.4±9.9  10g/kg:  10.1 <sup>ab</sup> 0.05±0.00 99.5±27.4  10.4 <sup>b</sup> 0.15±0.01 119.8±18.7  10.2 <sup>ab</sup> 0.06±0.03 105.7±4.7  11.1 <sup>ab</sup> 0.06±0.01 110.0±7.8 | ns:  ng/kg: $0.05\pm0.00$  | ns:  ng/kg: $0.05\pm0.00$       |

a, b and c Mean that are not followed by the same superscripts are significantly different ( P<0.05).

Increasing dietary copper from zero to 1000 mg/kg diet decreased numerically and linearly (P<0.05) the amount of cholesterol in plasma and yolk. Levels of 750 and 1000 mg/kg diet decreased the plasma and yolk cholesterol by about 7.52, 19.40, 20.62 and 30.92%, respectively during 8 weeks of experimental period. The decrease in plasma and yolk cholesterol supported the hypothesis that the higher copper concentration decreased the formation of hepatic glutathione and ultimately cholesterol formation (Kim et al., 1992). Glutathione acts in regulating cholesterol biosynthesis through the stimulation of enzyme 3-hydroxy-3-methylglutaryl co-enzymeA. reductase in rats (Valsala and Kurup, 1987). Liver copper regulates cholesterol

biosynthesis by reducing hepatic glutathione concentration (Kim *et al.*, 1992). If this hypothesis holds for rat, then chickens may respond similarly to the addition of copper. Kim *et al.*, (1992) indicated that reduced glutathione may play major role in cholesterol homeostasis. A recent study by Bakalli *et al.*, (1995) supported this hypothesis and agrees with this study.

Table (2): Blood hemoglobin (Hb), plasma Cu, plasma cholesterol, plasma lipid, yolk cholesterol and yolk total lipid of laying hens given control and Cu supplemented diet at 56 days

| items           | Hemo-                  | Plasma Cu | Plasma                  | Plasma                 | Yolk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
|-----------------|------------------------|-----------|-------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                 | globin                 | ppm       | cholesterol             | total lipid            | cholesterol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yolk total lipid g/g   |
| -               |                        |           | mg/dl                   | g/dl                   | mg/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | yolk                   |
| After tre       | eatment at             | 56 days:  |                         | 3                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | york                   |
| Among           | levels mg/k            | g diet:   |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| 0               | 8.3±0.3 <sup>ab</sup>  | 1.7±0.01  | 87.8±4.2°               | 2.2±0.28 <sup>ab</sup> | 9.7±1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.36±0.02              |
| 500             | 7.4±0.3 <sup>b</sup>   | 1.7±0.14  | 92.4±7.9ª               | 1.9±0.35 <sup>b</sup>  | 7.0±0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.37±0.02              |
| 750             | 8.1±0.3 <sup>ab</sup>  | 1.6±0.2   | 81.2±6.8 <sup>ab</sup>  | 2.2±0.40 <sup>ab</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.37±0.02              |
| 1000            | 8.8±0.2°               | 1.6±0.1   | 70.2±3.1 <sup>b</sup>   | 3.0±0.42 <sup>a</sup>  | 6.7±0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.32±0.02              |
|                 | source:                |           |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0220.02              |
| Copper sulphate |                        | 1.8±0.06  | 77.8±3.1                | 1.8±0.3 <sup>b</sup>   | 7.4±0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.34±0.01              |
| Copper          | 8.1±0.3                | 1.6±0.08  | 88.5±5.3                | 2.8±0.13 <sup>a</sup>  | 8.1±0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.36±0.01              |
| Interaction     | ons:                   |           |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| Sulphate        | mg/kg:                 |           |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| 0               | 8.7±0.1 <sup>ab</sup>  | 1.7±0.0   | 85.6±7.1 <sup>ab</sup>  | 1.7±0.16 <sup>ab</sup> | 8.2±1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.40±0.04              |
| 500             | 7.6±0.5 <sup>bc</sup>  | 1.9±0.3   | 78.8±7.6 <sup>b</sup>   | 1.3±0.17 <sup>b</sup>  | 5.7±1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.40±0.04<br>0.37±0.03 |
| 750             | 8.2±0.5 <sup>abc</sup> | 1.9±0.1   | 74.4±7.1°               | 1.3±0.20 <sup>b</sup>  | 9.8±3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.37±0.03              |
| 1000            | 8.3±0.2 <sup>abc</sup> | 1.7±0.05  | 72.5±3.5 <sup>b</sup>   | 3.1±0.91 <sup>a</sup>  | 5.9±0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.30±0.03              |
| Chloride        | mg/kg:                 |           |                         |                        | 0.020.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3010.02              |
| 0               | 7.9±0.4b°              | 1.7±0.0   | 90.1±2.7 <sup>ab</sup>  | 2.6±0.39 <sup>a</sup>  | 11.1±1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.33±0.01              |
| 500             | 7.3±0.5°               | 1.6±0.1   | 105.9±8.4ª              | 2.7±0.35 <sup>a</sup>  | THE RESERVE AND ADDRESS OF THE PARTY OF THE | 0.37±0.04              |
| 750             | 8.0±0.5 <sup>abc</sup> | 1.3±0.1   | 89.9±11.0 <sup>ab</sup> | 3.1±0.15 <sup>a</sup>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.41±0.03              |
| 1000            | 9.3±0.2ª               | 1.6±0.2   | 67.9±5.4 <sup>b</sup>   | 2.9±0.24 <sup>a</sup>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.35±0.03              |

a, b and c Mean that are not followed by the same superscripts are significantly different (P<0.05).

Copper supplementation positively affected plasma level of total lipids, the highest value recorded by feeding 1000 mg/kg diet. Plasma total lipids concentration of hens fed 500, 750 and 1000 mg/kg diet significantly increased by about 15.38, 42.30 and 61.53% when compared with the control group at the first 4 weeks experimental period, while those hens fed the same supplemental Cu levels significantly (P<0.05) reduced yolk total lipids. This experiment clearly demonstrates that yolk lipids can be lowered substantially by addition of 1000 mg/kg diet by about 15.78% when compared with control group (Table 1). The same trend was noticed at the end of 8 weeks experimental period. Copper chloride significantly (P<0.05) increased plasma total lipids during this period (Table 2).

## J. Agric. Sci. Mansoura Univ., 27(10), October, 2002

The liver weight expressed as g/kg body weight was given in Table (3). Liver weight/kg body weight numerically reduced by the *ad libitum* feeding of diet containing 500 and 750 mg/kg compared with those of control birds fed on diet without copper. These results agree with those reported by Jackson, 1977 and Jackson *et al.*, 1979. The Cu analysis of liver is shown in Table (3).

Table (3): Mean body weight, dressing weight, fresh weights (g/kg body weight) of liver and gizzard and copper concentration (ppm) in liver of laying hens given control and copper supplemented diets.

| Treat-<br>ments       | Body weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | weight         | Liver      | Gizzard     | Liver Cu<br>DM (ppm)  | Dry<br>weight<br>of liver<br>(g) | Total live<br>Cu (ppm) |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-------------|-----------------------|----------------------------------|------------------------|
| Among                 | levels mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | diet:          |            |             |                       | 13/                              |                        |
| 0                     | 1863.3±25.9ª                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1213.2±32.6    | 16.7±0.6   | 112.8±0.94  | 1.07+0.03             | 7 9+0 4                          | 8 6+0 6°               |
| 500                   | 1740.0±47.3ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1148.4±29.9    | 14.8±0.94  | 12.5±0.40   | 1.40+0.05             | 7 4+0 4                          | 10.7±0.7 <sup>b</sup>  |
| 750                   | 1803.0±54.9ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1156.2±21.8    | 15.4±0.72  | 11.2+0.77   | 1 80+0 02             | 8 6+0 5                          | 15.7±0.7               |
| 1000                  | 1701.7±33.7 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1108.6±35.3    | 16.0±0.93  | 12 2+0 93   | 3 10+0 07°            | 8 3+0 7                          | 24 5±0.3               |
| Betwee                | en source:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |            | 1.21220.00  | 0.1010.07             | 0.010.7                          | 24.010.3               |
| Copper sulphate       | 1796.7±31.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1151.5±26.8    | 15.1±0.55  | 11.9±0.51   | 2.3±0.50 <sup>a</sup> | 8.1±0.3                          | 18.9±3.5°              |
| Copper chloride       | 1757.5±34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1161.7±19.2    | 16.3±0.57  | 12.4±0.60   | 1.3±0.06 <sup>b</sup> | 8.0±0.4                          | 10.9±0.9 <sup>5</sup>  |
| Interact              | tions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |            |             | 1000                  |                                  |                        |
| Sulphat               | te mg/kg:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |            |             |                       |                                  |                        |
| 0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1211.2±42.8    | 16 7+1 10  | 11 2+1 10   | 1 06+0 06             | 0 1 1 0 0                        | 0 70 .0 70             |
| 500                   | 1793.3±37.1ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1171.6±59.8    | 13 7+0 29  | 12 4+0 56   | 1.5010.00             | 7.4.0.5                          | 0.70±0.7               |
| 750                   | THE PARTY NAMED IN COLUMN 2 IN | 1146.3±27.8    | 14 9+0 61  | 10.8+0.24   | 2 1+0 405             | 7.4±0.5                          | 10.8±1.46              |
| 1000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1076.9±69.7    | 5.1+1.60   | 13 4+1 50   | 4 8+0 90°             | 7.0±1.0                          | 19.5±5.2               |
| Chlorid               | e mg/kg:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 0.121100   | 10.11.00    | 4.010.00              | 1.911.0                          | 30.013.2               |
| )                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1215.2±59.1    | 6 7+0 87   | 14 4+0 82   | 1 08+0 040            | 7 0+0 7                          | 0 E 14 0C              |
| 500                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1125.3±19.31   | 5.8+1.70   | 12 6+0 681  | 1.00±0.04             | 7.5±0.7                          | 40.5±1.0°              |
| 750                   | 1746.7±104.8ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1166.1±39.01   | 5.8+1.40   | 11 5+1 601  | 50±0.05               | 0.UIU.0                          | 10.5±0.9°              |
| 1000                  | 1/46./±1/.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1140.2+19.41   | 6 8+0 90   | 11 2+1 001  | 10+0 1000             | 611 1                            | 122.0000               |
| , b and c<br>P<0.05). | Mean that are r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | not followed b | y the same | e superscri | pts are sign          | nificantly                       | different              |

Results show significant (P<0.05) increase of liver copper by dietary copper level. The two sources of copper showed significant increase by copper sulphate than copper chloride.

The effect of high levels of dietary copper in increasing liver Cu concentration in the present experiment agree with that obtained by Mehring et al., (1960) they found that liver Cu concentration increased from 14  $\mu$ g/g in control (26 mg Cu/kg diet) to 820  $\mu$ g/g in group receiving 1176 mg Cu/kg diet. Results by Jackson et al., (1979); Stevenson and Jackson (1981) reported the same trend.

This experiment clearly demonstrates that yolk cholesterol can be lowered substantially by the addition of 1000 mg/kg diet copper as sulphate

chloride. The main effects directly attributable to the copper sulphate are the high liver Cu. The variation in the tested prameters values could be attributed to differences in analytical method and strain.

#### REFERENCES

- Bakalli, R. I., G. M. Pesti, W. L. Ragland and V. Konjufca (1995). Dietary copper in excess of nutritional requirement reduces plasma and breast muscle cholesterol of chickens. Poultry Sci., 74: 360-365.
- El-Awady, Nadia. I., Amina, A., Salem; Eman, A. Abo-Etta and M. E. Nofal (2002). The effect of Dietary supplementation with copper sulphate or copper chloride on local strain (Mamourah) laying hens. 1: Effect of dietary copper level and source on performance, egg production, egg quality and gizzara structure of laying hens. J. Agric. Sci., Mansoura Univ., 27(10): 6677 6688
- Folch, J. M. Lees and G. H. S. Stanley, (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Bio. Chem. 226: 497-509.
- Jackson, N. (1977). The effect of dietary copper sulphate on laying performance, nutrient intake and tissue copper and iron levels of the mature, laying, domestic fowl. Br. J. Nutr., 38: 93-100.
- Jackson, N., M. H. Stevenson and G. M. Kirkpatrick (1979). Effects of the protracted feeding of copper sulphate-supplemented diets to laying, domestic fowl on egg production and on specific tiusses with special reference to mineral content. Br. J. Nutr., 42: 253-266.
- Kim, S., P. Y. Chao and G. D. A. Allen (1992). Inhibition of elevated hepatic glutathione abolished copper deficiency cholesterolemia. FASEB. J. 6: 2467-2471.
- Konjufca, V. H., G. M. Pesti and R. I. Bakalli (1997). Modulation of cholesterol levels in broiler meat by dietary garlic and copper. Poultry Sci., 76: 1264-1274.
- Mehring, A. L. jr., J. H. Brumbaugh, A. J. Sutherland and H. W. Titus (1960). The tolerance of growing chickens for dietary copper. Poultry Sci., 39: 213-219.
- Pearce, J. N., Jackson and M. H. Stevenson (1983). The effects of dietary intake and dietary concentration of copper sulphate on laying domestic fowl: Effects of some aspects of lipid, carbohydrate and amino acid metabolism. Br. Poult. Sci., 24: 337-348.
- Pesti, G. M. and R. I. Bakalli (1996). Studies on feeding of cupric sulfate pentahydrate and cupric citrate to broiler chickens. Poultry Sci., 76: 1086-1096.
- Stevenson, M. H. and N. Jackson (1981). An attempt to distinguish between the direct and indirect effect in the laying domestic fowl of added copper sulphate. Br. J. Nutr. 46: 71-76.
- Valsala, P. and P. A. Kurup (1987). Investigations on the mechanism of hypercholesterolemia observed in copper deficiency in rat. J. Biosciences, 12: 137-142.

# J. Agric. Sci. Mansoura Univ., 27(10), October, 2002

Washburn, K. W. and D. F. Nix (1974). A rapid technique for extraction of yolk cholesterol. Poultry Sci., 53: 1118-1112.

التأثير الغذائي لإضافة كبريتات النحاس أو كلوريد النحاس على سلالات المعمورة المحلية للدجاج البياض ·

٢- التأثيرات الغذائية لمصادر وتركيزات النحاس على الدهون الكلية و كوليسترول الصفار والبلازما للدجاج البياض.

نادية إبراهيم العوضى - إيمان أبو عيطة - محمد عيسى نوفل. معهد بحوث الإنتاج الحيواني - مركز البحوث الزراعية- الدقى-جيزة -مصر.

صممت التجربة لمعرفة إمكانية تقليل كوليسترول صفار البيض وذلك باستخدام سلالة المعمورة للدجاج البياض عند عمر ٣٦ أسبوع وتمت التغذية على عليقة أساسية من النزة وكسب فول الصويا مضاف إليها أربع مستويات من النحاس صفر، ٥٠٠، ٥٠٠ و ١٠٠٠ ملليجر ام/ كيلو جرام عليقة على هيئة كبرتيات نحاس مائية وكلوريد نحاس مائي ومع نهاية كل فترة من فترات التجربة تم اخذ ٣ بيضات بطريقة عشوائية من كل مجموعة لتقدير محتوى الصفار من الكوليسترول والدهون الكلية.

- أظهر مستوى إضافة (٥٠٠ ملليجرام/كيلوجرام عليقة) انخفاض معنوي (مستوى ٥٠٠) في اظهر مستوى الدم بتغيير مصادر النحاس.

- أظهرت كل من مستويات النحاس ومصادره في العليقة تأثير سلبي على محتوى البلازما من النحاس،

- اظهرت النتائج أن زيادة النحاس من (صفر إلى ١٠٠٠ ملليجرام/كيلوجرام عليقة) انخفاضا منتظما على محتوى البلازما من الكوليسترول. وأن كل من مستوى (٧٥٠ و ١٠٠٠ ملليجرام/كيلوجرام عليقة) أدى إلى انخفاض كل من محتوى البلازما والصفار من الكوليسترول بحوالي (٢٠,٥٢، ١٩,٤٠، ٢٠,٦٢ على التوالي) خلال فترة ٨ أسابيع من مدة التجربة.
  - كان لإضافة النحاس تأثيرا إيجابيا على محتوى البلازما من الدهون الكلية.
- أوضحت النتائج انخفاضا في محتوى صفار البيض من الدهون الكلية وأن مستوى إضافة أوضحت النتائج انخفاضا في محتوى الخفاضا يقدر بحوالي ١٥,٨٧% مقارنة بالكنترول.
- أنخفض وزن الكبد (جم/كيلوجرام وزن حي) (عند مستوى ٥٠٠، ٥٥، ملليجرام/كيلــوجرام عليقة).
  - زاد تركيز النحاس بالكبد بزيادة مستويات النحاس في العليقة.
- رسرير سحم بحب بريات المنطقة من النجام البياض على مستويات ومصادر مختلفة من النحاس على مستويات ومصادر مختلفة من النحاس يؤدى إلى الاستجابة الفسيولوجية تبعا لنوع السلالة وطول فترة التجربة.