ABSTRACT

Goats are the most efficient animals in converting poor feed resources into valuable food commodities, than other farm animals. It is emerged as a good source of food, income, and employment for rural societies, especially in less favoured environments. Distribution of goats in the country, under different production systems, were presented. Four major local goat breeds are widely distributed in Egypt, i.e., Baladi in the Delta, Saadi in Upper Egypt, Barki in Western Desert and the Zaraibi (Egyptian Nubian) as potential dairy prolific breed, in northeast Delta. Minor local goat breeds are Wahati in the New Valley, Black Sinai in Sinai Peninsula, and Abou Ramada- Halaib- Shalateen goats. Production performance (growth, reproduction and milk production) of the major local breeds reported in the literature are tabulated and discussed. Exotic breeds introduced to the country, i.e. Damascus, Alpine, Angora, Anglo Nubian, and Boer, along with their breeding and crossing programs with local goat breeds were reported. The authors recommended the promotion of the socioeconomic role of goats for the poor rural households and women; and taking an advantage of the goat adaptability to harsh conditions, in the hot dry environment. Improving genetic potentials of Zaraibi goats for prolificacy and dairy characteristics, and crossing Damascus goats with Barki and Baladi goats are recommended for improvement of local goats.

Keywords: local goats, exotic breeds, production, reproduction, Egypt.

INTRODUCTION

1. Socioeconomic role of goats in Egypt:

Goats are among the early animals domesticated by the man and developed for his livelihood. They reproduce more than cattle, buffalo, and most sheep (Gall, 1975). Goats are more efficient than other ruminants in converting poor feed resources into valuable food for human consumption (Devendra, 1976). However, in many countries goats are not raised an integrated economic enterprise, but rather are considered as “clean up” animals, supplying the family needs of food and cash. Goats are heavily spread worldwide, and have an important socio-economic role, especially in developing countries. In the last years, goat raising have become an important economic role, especially in developing countries. Goat’s production in Egypt, 2014). Total goat’s population is about 4.2 million heads (Ministry of Agriculture, 2014). They are emerged as favourable environments, where high crop production is uncertain, and rearing large ruminants is restricted by feed scarcity. They also possess number of desirable features that supported their compromises in diverse environmental conditions, e.g., limited initial investment requirements, high prolificacy, early sexual maturity, and low feed requirements. Dairy goat is known as “poor man’s cow”, because of its immense contribution to the socio-economy of destitute farmers and small holders, in rural societies. Numbers of goat heads can be maintained easily by a man or woman and can be easily liquidated in times of crises. Goats are good supplementary source of income to the small rural household. They have a superior adaptability to arid conditions, due to their high capability to conserve water, travel for long distance, graze selectively wide variety of vegetation, resistant to number of infectious diseases, and could acquire more than one kid every year.

Goats are raised in Egypt for meat and milk, about 2.7% of the total meat produced come from goats (Ministry of Agriculture, 2014). Goat milk is usually processed to butter and cheese, mostly consumed by the family or, sold on a small scale in the local markets. Out of the national Gross Domestic Product (GDP) from agriculture, goat contribute 8% of animal production GDP (Galal et al., 2005)

2. Goat distribution in Egypt

Livestock population surveys in Egypt are conducted by species per governorate, not by breed. However, distribution of goats by breed was approximately inferred from the geographical surveys by ICARDA for characterization of small ruminants' genetic resources in West Asia and North Africa region (De Paruw et al., 2011, Fig1). There are four major Egyptian goat breeds, three of them are widely distributed in the country, Egyptian Baladi goats in the Delta, Saadi goats in Upper Egypt, and Barki goats in the north Coastal Zone of Western Desert. The fourth major breed is the Zaraibi goats (Egyptian Nubian), which having high reputation as potential dairy prolific breed, raised in northeast Delta. There are other minor local breeds; such as Wahati goats in the New Valley, Black Sinai in Sinai peninsula, and Abouramada- Halaib- Shalateen goats (AHS), in Haileib- Shalateen triangle.

3. Goat’s production systems:

The prevailed goat production systems in Egypt are:

- Semi Intensive System: In this system, goats are owned in small numbers, few heads per farmer. Mating is practised by leaving males with females all the time. Feeding is managed by scavenging and grazing crop residues and...
grasses growing on the irrigation canal sides. Supplementary feeding is rarely offered. Males are fattened on concentrates for slaughtering at special events.

- **Extensive system**: revealed in the desert areas, on natural ranges, which are available for 3-5 months depending on the levels of rain falls. Out of rainy season (drought season), animals depend on supplementary feeding such as barely grains, barely straw and crop by-products by selling some of the animals.

- **Household system**: under this system goats play significant role in the food chain, and the livelihoods of the poor rural households, mostly women and children. They adopt low input/output system, combined with lack of modern agriculture practices (poor feeding and housing), inappropriate breeding and poor health control.

- **Mixed crop-livestock system**: this system consists of integrated crop and livestock activities. Livestock depend on extensive grazing of natural veld and crop residues during the dry season. This is a closed system in which waste products of cultivated crops are used by the livestock, and in turn return its own waste (manure) back to the crop fields.

Table 1. Goat production systems, main products, and market possibilities.

<table>
<thead>
<tr>
<th>Breed</th>
<th>Production system</th>
<th>Main products</th>
<th>Market demand and possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHS goats</td>
<td>Extensive grazing, transhumance</td>
<td>Meat</td>
<td>moderate demand due to small human population but could increase if good road/air transportation are established</td>
</tr>
<tr>
<td>Barki goats</td>
<td>Extensive grazing, transhumance</td>
<td>Meat</td>
<td>high demand, due to popular internal demand, particularly when sold young</td>
</tr>
<tr>
<td>Black Sinai</td>
<td>Extensive grazing</td>
<td>Meat</td>
<td>moderate demand due to small human population</td>
</tr>
<tr>
<td>Egyptian Baladi</td>
<td>Mixed crop-livestock</td>
<td>Meat</td>
<td>high demand, due to popular internal demand, particularly when sold young</td>
</tr>
<tr>
<td>Sadii goats</td>
<td>Mixed crop-livestock</td>
<td>Meat</td>
<td>high demand, due to popular internal demand, particularly when sold young</td>
</tr>
<tr>
<td>Wahati goats</td>
<td>Mixed crop-livestock</td>
<td>Meat</td>
<td>moderate demand due to relatively small human population</td>
</tr>
<tr>
<td>Zarabi goats</td>
<td>Mixed crop-livestock</td>
<td>Meat, milk</td>
<td>high demand, high milk production for processing, and high breeding rate</td>
</tr>
</tbody>
</table>

Table 2. Management calendar in different systems

<table>
<thead>
<tr>
<th>Breed</th>
<th>Matting season</th>
<th>Pregnancy</th>
<th>Kidding season</th>
<th>Lactating</th>
<th>Grazing</th>
<th>Concentrate feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHS</td>
<td>Jun.- Jul.</td>
<td>All year round</td>
<td>All year round</td>
<td>All year round</td>
<td>May to Nov.</td>
<td>Jun to Oct.</td>
</tr>
<tr>
<td>Barki</td>
<td>Increased May to July</td>
<td>All year round</td>
<td>All year round</td>
<td>All year round</td>
<td>Nov.-Feb.</td>
<td>All year round</td>
</tr>
<tr>
<td>All year round</td>
<td>More in Oct.-Feb.in Nov.</td>
<td>All year round</td>
<td>All year round</td>
<td>All year round</td>
<td>May to Nov.</td>
<td>Jun to Oct.</td>
</tr>
<tr>
<td>Black Sinai</td>
<td>Jun.- Jul.</td>
<td>All year round</td>
<td>All year round</td>
<td>All year round</td>
<td>Nov. to Feb</td>
<td>All year round</td>
</tr>
<tr>
<td>Egyptian Baladi</td>
<td>All year round</td>
</tr>
<tr>
<td>Sadii</td>
<td>All year round</td>
</tr>
<tr>
<td>Wahati</td>
<td>All year round</td>
<td>No</td>
</tr>
<tr>
<td>Zarabi</td>
<td>All year round</td>
</tr>
</tbody>
</table>

Goat breeds in Egypt

1. Main local breeds

Zarabi goat (Egyptian Nubian)

The breed was named “Zarabi” as bred in confinements in the peri-urban areas, known as (Zarabi), and named “Egyptian Nubian” after Nubia region, the first area where the breed had been originated. At present, the breed exists mainly in the Northeast Delta region. It was reported to be one of the progenitors of the standard Anglo-Nubian goats (Devendra, 1976). It has very recognisable and distinct convex profile, distinguished Roman nose, with many animals having undershot jaw (Annex1). They are very prolific goats and have good reputation for their lactation performance (Galal, 1987). Both genders rarely have horns, ears are long, pendulous, and drooping, body is covered with short hair.

Aboul-Naga and El-Shobokshy (1981) described the breed as a medium size, long legged, with long pendulum ears and distinguishable roman nose. Short horns could be present in both genders but are usually absent in most individuals. The predominant colour is brown with white or dark spots; however, black individuals are frequently found with white or pied spots. Zarabi goats are considered as a potential local breed, it produces relatively high amount of milk, averaging 240 kg in 6.5 months’ lactation period (Abd-El-Reheem, 1998; Aboul Naga et al., 2012), an have satisfactory mature body weight up to 70 kg (Galal, 1985).

Early in the eighties of last century, an interest trial was carried out by Animal Production Research Institute to establish a nucleus herd of Zarabi goats, and series of studies had been carried on. About-El-Ela et al. (1988) reported variable ovulation rates, ranging from 1 to 6, with a mean of 2.6 ova’s. Abdel-Reheem (1998) reported normal oestrous cycles occurring in autumn and winter (15 – 24 d), whereas high incidence of long cycles was observed in the summer (37%), short cycles (<14 d) were reported in the spring. Supplementary feeding during pre-mating and mating periods (flushing) increased significantly ovulation rate of Zarabi goats (About-El-Ela and About-Naga, 1987). Breeding season seems to be restricted to nine months, with anoestrus period in summer months (Shalash et al., 1970). Zarabi does usually kid once a year (Mousa, 1988).

Milk yield of Zarabi does range from 96 to 208 kg (Table 3) in a lactation period of 10 to 29 weeks (About-Naga et al., 1987). In two different trials, Galal (1987) reported 240 kg of milk over periods of 230 days, and 239.7 kg over 197.6 days. Zarabi milk contains 4.23, 2.59, 12.56 and 0.74% butter fat, protein, total solids and ash, respectively (El Gallal et al., 1988).
Effects of feeding level on milk yield, fat percentage, lactation length, birth and weaning weights, were stated by Soryal and Metawi (2000) and by Eaton Abo Ammu et al. (2006). The results of fattening Zaraibi kids for 100 days at 5 months of age were reported by Said (1983), feed efficiency was 6.53 TDN/ kg gain, with daily gain of 55 g, and dressing percentage of 39.4 to 46.4 %. Meat percentage was 69.3 to 75.0%, separable fat was 5.0 to 12.6%, bone % was 16.1 to 20.0, and the fat to bone ratio ranged from 3.8:1 to 5.2:1, with an average of 4.3:1 (El-Gallad et al., 1988). Dietary energy supplementation pre-and during mating had beneficial effects on the performance of Zaraibi kids. Multiple births is common in Zaraibi goats, causing light weight of kids at birth, consequently, high mortality rates might occur early in the kids life.

Table 3. Performance of main local Egyptian goat breeds.

<table>
<thead>
<tr>
<th>Breed</th>
<th>Trait</th>
<th>Barki</th>
<th>E. Baladi</th>
<th>Zaraibi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birth weight (kg)</td>
<td>2.28</td>
<td>1.70 (M+F)</td>
<td>2.41 (M+F)</td>
</tr>
<tr>
<td></td>
<td>Weaning weight (kg)</td>
<td>6.65 (M+F)</td>
<td>7.50 (M+F)</td>
<td>6.49 (M+F)</td>
</tr>
<tr>
<td></td>
<td>Yearling weight (kg)</td>
<td>25.7 (M+F)</td>
<td>17.1 (M+F)</td>
<td>20.7 (M+F)</td>
</tr>
<tr>
<td></td>
<td>Mature weight</td>
<td>25.8-42 (M+F)</td>
<td>35-40 (M+F)</td>
<td>25.0-40 (M+F)</td>
</tr>
</tbody>
</table>

Reproduction performance

Oestrus cycle (days)	15-24	20
Ovulation rate	22	
Age at first kidding (months)	18-18	86
Fertility rate	89 (M)	64 (F)
Abortion rate	10 (M)	
Kids born/doe exposed	1.0 (M)	0.8 (F)
Kids born/doe kidding	1.2 (M)	0.9 (F)
Kids weaned/doe kidding	1.1 (M)	0.9 (F)
Lactation rate	16.5 (M)	13.95 (F)
Average kidding rate	10.5 (M)	

Multiple births might occur early in the kids life. Yearling weight, fat percentage, lactation period of 4-6 months of age (Lotfi and Youssef, 1968). Breeding season seems to be profound to nine months from September with anoestrus period from January to March (Shalash et al., 1970), does usually get birth once a year (Mousa, 1988).

Selection plan for improving Zaraibi goats.

Long term selection program was applied on the Zaraibi nucleus herd at APRI since 1983. The does were mated once/year in (October) till 1992, thereafter, they were mated in two seasons (June and October). Starting from 2000, selection indices were designed and applied for both males and females. The indices included (4- and 12-months weights, first parity, total milk yield and milk yield of their dams).

Table 4. Estimates of genetic gain in the Zaraibi nucleus herd

<table>
<thead>
<tr>
<th>Genetic gain</th>
<th>Period</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield (kg/year)</td>
<td>0.690</td>
<td>1995-2008</td>
</tr>
<tr>
<td>Weaning weight</td>
<td>0.720</td>
<td>1995-2008</td>
</tr>
<tr>
<td>Kids born/doe exposed</td>
<td>0.215</td>
<td>1990-2014</td>
</tr>
<tr>
<td>Kids weaned/doe kidding</td>
<td>0.973</td>
<td>1998-2007</td>
</tr>
<tr>
<td>Fertility rate</td>
<td>0.091</td>
<td>1998-2007</td>
</tr>
<tr>
<td>Age at first kidding (months)</td>
<td>1.083</td>
<td>2005-2012</td>
</tr>
<tr>
<td>Kids born/doe exposed</td>
<td>0.072</td>
<td>2005-2012</td>
</tr>
<tr>
<td>Kids weaned/doe kidding</td>
<td>0.158</td>
<td>2005-2012</td>
</tr>
</tbody>
</table>

Egyptian Baladi goats:

Baladi goats have been reported as a good fertile, prolific, non-seasonal breed, able to produce more than once per year (Galal, 1987; Tantawy and Ahmed, 1960). Growth rates of Egyptian Baladi goats is generally low with variable daily gain (Table 4), which reflected slow capability for meat production. Provision of improved feeding system during late pregnancy and lactation increased growth performance of the kids. High average daily gain from birth to weaning are justifiable, assuming that the kids are being fed on concentrate feeds. On farm trails showed that average kidding rate of Baladi goats, under small farmer conditions in Delta, rate was 2.2 kid/doe.

The weight gain of Baladi kids is associated with milk intake during the suckling period. Daily gain of kids up to weaning averaged 56.5 g, but higher estimates were reported for the first 28 days of kidding. Fattening of Baladi kids is widely practiced by goat owners at 6-8 months of age for a period of 4-6 months (Lotfi and Youssef, 1968). Breeding season seems to be profound to nine months from September with anoestrus period from January to March (Shalash et al., 1970); does usually get birth once a year (Mousa, 1988).

Baladi goats can cope with the adverse subtropical climate of Egypt. Furthermore, they are able to maintain their physiological and production parameters high Temperature Humidity Index (THI) up to 80. Reduction in milk yield, biochemical (serum total protein and glucose) and haematological (leucocytes count) indices have been induced at THI value more than 80. Appropriate strategies to alleviate negative impacts of thermal stress on Baladi goats were successful. Mortality rate of Baladi kids up to weaning reached 41% for multiple birth kids (Tantawy and Ahmed, 1960), with a range from 6.4% in spring to 61.3% in winter (Shalash et al., 1970).

Barki goats:

Barki (or Saharawi) goats are raised along the coastal zone of Western Desert, characterized with small head and straight profile, males and most of females have horns. Ears are medium and drooping (Galal,1987). Colour is mainly black with white spots on the head and the body, there are incidences of other colours (Annex1). The body is covered with long hair. Barki goats are known to be hardy animals
with fertility rate over 80% per crop, and have medium twinning rate (150%), and good ability to breed more than once/year (Aboul-Naga et al., 1985). The breed is well adapted to the natural ranges and scarce vegetation in the desert areas. Barki goats are generally with low milk production, poor growth rate, however, they are highly fertile and able to breed all the year round.

Average body weight at birth, weaning, one-year-old, and adult are 2.5, 17.1, 30 kg, respectively. Growth rate up to weaning was 78 g/day for both sexes (Aboul-Naga et al., 1987). Fattening of Barki male kids is practiced at 5-6 months of age for 100 days (Aboul-Naga et al., 1985).

Milk production of Barki does is relatively low, averaging 81.5 kg in a lactation period of 145 days (Table 4). Barki milk contains 3.61 to 3.93% fat and 10.8 to 11.8% total solids. Does are bred throughout the year, and two kid crops per year is common. Females are usually bred when reaching one year of age.

Saidi goats:

The breed is spread all over Upper Egypt, however, only few reports are available in the literature on their performance. Oestrous synchronization of Saidi goats carried out by Abdel-Ghani et al. (2015), was successful in high incidence of multiple kidding. This breed is known for their adaptation to hot dry conditions in Upper Egypt, and able to tolerate temperature fluctuations throughout the day (Aboul Naga et al., 2021). Saidi goats proved to be more genetically distinct than other local breeds (Aboul Naga et al., 2023). Recently, Abd Elgaber (2023, personal communication) revealed that production performance of Saidi goats was as follow: services per conception 2.3, twinning rate 1.88, birth weight 1741 g (ranged from 900 to 2900 g) for males and 1381.3 g (from 950 to 2200 g) for females. Mortality rate of kids till weaning was 12.5%, milk yield in 22 weeks was 598.9 g and ranged from 300 to 1150 g, and kid growth rate was 41.4 g/day with a wide range from 23.6 to 70.3 g.

Investigating the production system of Saidi goats in Assiut and Aswan Governorates, Abdel Sabour (2023, under publication), reported that Saidi goats are raised in small herds mixed with sheep flocks. They are generally of low performance when both Barki and Wahati goats have medium twinning rate and high kid mortality.

2. Minor local goat breeds:

Abouramad-Halaieb-Shalateen (AHS):

AHS is the smallest Egyptian goat breed in body size, found in the triangle Abouramad-Halaieb-Shalateen. Average body weight is 20 kg with long black hair but sometimes red or white. Both genders are often horned. Fertility ranges from 88 to 94% and average litter size from 1.30 to 1.45. Milk yield in 16 weeks lactation, kidding ranges from 23-39 kg (Desert Research Centre, 1996).

Black Sinai goat:

Little performance estimates are available about the Black Sinai goat, however, animals are known to be hardy goats and having small body size (16-26 kg), they are extremely tolerant to the thirst (Malek and Shkolnik, 1979). Even when they are lactating, they drink only once every 2 days and can graze far away from the water points. The ability of these goats to withstand water deprivation without any effect on milk yield is surpassing any other desert animals (Shkolnik and Choshniak, 2000). Once there have access to water, they replenish their entire water loss.

Rain in Sinai is scarce, but occasional flash rains may cause floods and wide temperature diurnal variation. Signs of overgrazing and range degradation are evident infrequent drinking occurs when grazing is done at great distances from the watering sites. Kandil et al. (2012) studied the economic performance of Black Sinai goats under the breeder’s extensive system and reported economic efficiency of 80.5% for 1.5, 11.0% for 12.2 kg and 15.9 kg, for conception rate; twinning rate; mortality up to weaning; kg of kids weaned/doe joined; and kg of kids marketed /doe joined, respectively. Output/input ratio was 1.85; they concluded that improvement of management practices of Sinai goats could feasibly improve their performance substantially.

Wahati goat:

Named after the desert oases “Waha, in Arabic” in the New Valley Governorate. Body size is small (probably as small as the Black Sinai) (Annex1); average body weights are 28-35 kg in males and 21-26 kg in females. Both genders are horned; horns are relatively long with different shapes, but they are splaying out with an upward inclination in males (Galal, 1987). Colour is mostly black, but some light colours may be found. The body is covered with long glossy hair. Milk production estimates are 30 to 40 kg in lactation period of variable duration. Information available on Wahati goats are limited, preliminary observations reported by the University of Al-Azhar indicated that number of kids born/doe is more than 2 kids/year, goats bred all the year-round (Galal, 1987). Wahati goats are tolerant to heat stress up to 50 °C, of intensive solar radiation under the flock conditions in the New Valley (Aboul-Naga et al., 2021).

3. Exotic goat breeds:

Sands and McDowell, (1978) stated that improving milk production in the tropics could be achieved by the introduction of standard temperate dairy goat breeds, whom their milk production ranged from 350-950 kg, nearly double, the production of tropical goats. From the literature, only four of the European temperate dairy breeds have been bred successfully in the tropics, they are Saanen, Toggenberg, Alpine, and Anglo-Nubian. Milk production of the imported breeds has been decreased by about 25-50% of their yield (Gall, 1975, Montaldo et al., 1978; NDLR 1980).

Number of regional goats (Damascus and Angora) and international goat breeds (Alpine, Anglo-Nubian, and Boar goats) had been introduced to Egypt to improve milk and meat production of local goats, especially Barki and Baladi goats.

Damascus goat:

Damascus goat breed (D) is the most developed dairy goats in the Near East. The breed had been introduced to number of countries in the region including Cyprus, Gulf countries, Israel, and Egypt. The successive selection program in Cyprus developed the breed to the international levels for milk yield and kid performance.

Early in the eighties of last century, batches of Damascus goats were imported from Cyprus to be crossed with Barki goats in the coastal zone of Western Desert (and later with Baladi goats). The largest trial was in 1983, included 78 Damascus bucks distributed on the Bedouin goat breeders, with the objective to introduce around 25% of Damascus blood to the region. The trial was assessed after
two decades with 59 breeders (Aboul Naga et al., 2010). The Damascus crosses had the advantage of heavier weights, better body confirmation, and higher milk production. Damascus crossbred kids were 50% heavier in weight and price, 3 months earlier in maturity, double in milk production in 2-3 months (longer lactation season) than the Barki parent. The most important advantage is their well adaptation to the arid conditions of Western Desert, the only disadvantage reported was their high feed requirements.

On farm trial of crossing Bariki goats with Damascus, had resulted in increasing number of kids born per doe to be 1.196 (Aboul-Naga et al., 1987). Number of kids weaned per doe was 0.764, and milk yield averaged 159.9 kg throughout 17 weeks of lactation. The Damascus does had longevity up to the 9th lactation, achieving the highest milk yield and mature body weight (46.3kg) at their 4th parity. Their kids had good survival rate and are well adapted to the subtropical conditions.

Abdel Salam et al. (1991) reported that milk production and lactation period differed significantly between pure Bariki and D crosses. Salam et al. (2000) reported that D X Bariki crossbreed goats had better milk properties than the Bariki but less than the Damascus. Crossbreds D goats gave 76% more milk and more persistent yield up to the 27th week of lactation. Average daily milk yield for D crosses was around 1000g vs. 300g for Bariki and 500g for Zaraibi goats. Crossing Damascus with Baladi goats improved both their milk and kid production. Baladi does mated with Damascus bucks were of good fertility and high prolificacy. Aboul Naga et al. (1989) recorded considerable demand by the breeders for D bucks to improve meat and milk production of Bariki and Baladi goats in their herds

Angora goats:

An Angora herd was imported in the seventies from Turkey and raised at Borg-Arab Farm at the Coastal Zone of Western Desert, the goats performed reasonably well in the first years of importation but deteriorated thereafter. Number of does conceive, kids born and kids weaned per doe were 0.836, 1.140 and 0.860 in the first 3 years of importation, but declined to 0.623, 0.896 and 0.750 in the last 3 years (Latif et al. 1978).

Angora and Bariki kids performed closely at birth and weaning. Carcass weight, dressing percentage, body measurements, and offal weight were close in both breeds. Baladi goats had heavier prime cuts (P < 0.05) than the Angora. The two breeds had similar percentage of edible meat (68-38 versus 68-7), lean (57.5 versus 57-4), and fat in the rib joint (10-9 versus 11-3). Hair production of Angora goats averaged 0.597kg annually from two shearing, being higher in quantity and quality than of the Bariki.

Alpine goats:

Early in the eighties of the last century, French Alpine herd (200 pregnant doe kids and seven bucks) was imported to Egypt for the first time, they were bred as purebred in a private farm in Beheira Governorate for dairy production. Analysing the records of 50 French Alpine, 38 Zaraibi does, and 42 Alpine x Zaraibi crossbred kids in a private farm, Dakahila Governorate, showed that Zaraibi goats were superior to the Alpine in their fertility, litter size at birth, weaning rates, and mortality (Aboulhaga et al., 1987). Alpine kids significantly grew faster than the crossbreds. Sex did not significantly (P> 0.05) affect body weights and average daily gains of kids, until 150 d of age. Alpine kids had better body compactness (P= 0.001), and body conformation than the crossbred kids (P< 0.05).

Crossing Baladi goats with either Alpine or Damascus breeds improved their milk and kid production. Does mated with either Alpine or Damascus bucks were of good fertility and higher prolificacy.

Boer goats:

Boer breed is meat type goats which have been introduced to different countries worldwide, including Egypt. They were crossed with Egyptian Baladi goats in order to improve their kid and meat production. The crossbreds were significantly heavier (about 25%) than the Baladi kids at birth, weaning, 6, 9, and 12 months of age, but were significantly lower than the Boar parent. Crossbreeding of local Baladi goats with Boer is becoming a method to improve meat productivity of Egyptian Baladi goats (Abd-Allah et al., 2016).

Anglo-Nubian

The Anglo Nubian breed was developed in Britain in the 19th century (Gull 1996). It originated from crossing native Prick-Eared Old English goats, and a variety of lop-eared breeds from eastern Mediterranean, and north Africa, which had long ears and roman facial profile. Mason (2002) mentioned that only the two tropical breeds; Zaraibi (Egyptian Nubian) from southern Egypt and Jamna-Pari from India, were crossed with the British goat. Chital breed from north Pakistan was also involved.

The imported Anglo Nubian to Egypt showed good fertility as the Egyptian Nubian, but they were less prolific and smaller body size. Their kids were heavier at birth and at weaning. However, kids had higher losses due to slow acting infection disease (Knee Arthritis, Aboul-Naga; personal communication)

CONCLUSIONS AND RECOMMENDATIONS

Goats are more efficient than other farm animals in converting poor feed resources into valuable food for human consumption. From the socioeconomic aspect, goat rearing enterprises is superior potential as a promising source of income and employment for rural societies, especially the less favoured groups (landless, poor families and women). Few heads of goats can be maintained easily by a woman or children and can be easily liquidated in times of crises. Goat rearing is a low cost and supplementary source of income for rural destitute communities.

Local goat breeds proved to be well adapted to the prevailed hot dry conditions, with good capabilities for water conservation, travel for long distance, graze selectively wide variety of vegetation, resistance to number of diseases, produce and reproduce under harsh environmental conditions, and are favoured than the standard breeds.

Improvement of the potential Zaraibi goat proved to be successful. National program for improvement of Zaraibi goats is highly recommended to improve their milk production, while keeping their high prolificacy and reasonable body size. Such programs require good collaboration with the breeders and local communities to carry out these tasks.
Aboul–Naga, A. M. et al.

Damascus breed (D) is well developed dairy goats in the region. They prove to be well adapted to the hot dry environment conditions and have been successful in different countries of the Near East. They have been crossed successfully with Barki and Baladi goats in Egypt, doubling their milk production and realized 50% increase in kid weight and price.

Annex 1

Zaraibi Goats

E. Baladi Goats

Saidi Goats

Barki Goats

REFERENCES

Galal, E.S.E. 1985. Improving of sheep production in Egypt through the introduction of exotic breeds. FAO Publication.

