Journal of Animal and Poultry Production

Oxidative Stress and Trace Elements Status in Different Reproductive Stages of Shami Goat Does Fed Salt-Tolerant Plants under Semi-Arid Conditions in Egypt

Hanan Z. Amer1,2*, G. R. Donia3 and N. H. Ibrahim4

1Animal and Poultry Physiology Department, Animal and Poultry Production Division, Desert Research Center, Egypt
2Department of Biology, Faculty of Science, Jazan University, Kingdom of Saudi Arabia
3Animal Health Department, Animal and Poultry Production Division, Desert Research Center, Egypt
4Animal and Poultry Production Department, Faculty of Agriculture, Beni-Suef University, Egypt.

ABSTRACT

Objective of this study was to explore the impact of adding El-Mufeed liquid to salt tolerant plants in an attempt to reduce the oxidative stress of these plants by detecting changes in antioxidant indicators such as malondialdehyde (MDA), total antioxidant capacity (TAC), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX) in Shami goats during pregnancy under South Sinai semi-arid conditions, Egypt. Two equal experimental groups (12 does each) were used. The first control group was fed wheat straw as the roughage portion of the diet, while the second group was fed salt tolerant plants mixed with El-Mufeed liquid. Blood samples were assembled from all experimental animals during dry, gestation and early lactation periods. Profile of MAD, TAC, CAT and trace elements (Cu, Se, Mn and Zn) were analyzed in plasma, while antioxidant SOD and GPX activities were measured in erythrocytes. Oxidative stress marker (MAD) was increased significantly with progress of gestation and lactation period and the vice versa was observed in TAC, CAT, SOD and GPX. It was observed that trace element and antioxidant enzymes had similar trend of decrease in experimental period. Goats fed salt tolerant plants treated with El-Mufeed liquid did not differ greatly than control ones in their blood contents of antioxidant capacity (TAC) and antioxidant enzymes despite trace elements in spite of exposing to higher stress. Accordingly, it can be concluded that using El-Mufeed liquid to supply animals with trace minerals reduced oxidative effect of salt plants especially under stress of pregnancy.

Keywords: Goat does, salt tolerant plants, pregnancy, oxidative stress, trace elements.

INTRODUCTION

Lack of feed resources is one of the main constraints on animal production in arid and semi-arid areas of Egypt. Attention was therefore paid to the use of marginal resources, i.e. saline soils and groundwater, to produce unconventional pasture plants for animal feeding where traditional pasture cannot be cultivated. Native pastures (halophytes and other salt-tolerant plants) are the main sources of nutrition in the Egyptian deserts (Al-Shaer, 1996). The decrease and unpalatable plant species characterize about 70% of the total coverage. Some processing methods had been examined such as ensiling halophytic plants (Abou El Nasr et al., 1996) or using some additives such as El-Mufeed liquid (Attia-Ismael et al., 1995) to improve the palatability and nutritional values of these unconventional plants.

In the past few years, the discovery of free radical destruction and the protection against it has turned out to be of great importance in animal production and reproduction studies where the lipid peroxide level and antioxidant state provide supplementary knowledge around the metabolic state of the animal rather than metabolic measurements alone (Castillo et al., 2003; Amer et al., 2014). Under healthy conditions, antioxidant enzymes and reactive oxygen species remain balanced, but this balance is disturbed in oxidative stress cases (Aurouseau et al., 2006). The reactive oxygen species containing hydrogen peroxide, superoxide radical and hydroxyl radical (Nazifi et al., 2010a) which are greatly toxic to cells and can highly interact with lively biomolecules such as proteins, lipids, nucleic acid, which leads to denaturation Protein, lipid peroxidation and DNA mutation (Esfandiar et al., 2007). This makes oxidative stress as one of the greatest usual mechanisms related with development of diseases variety (Berchieri-Ronchi et al., 2015; Kandiel et al., 2016). The ROS interact with lipids producing many intermediate compounds such as lipid peroxides, malondialdehyde (MDA) (Erisär et al., 2009), that extensively used for assessing oxidative stress (Lykkesfeldt and Svendsen 2007).

Total antioxidant capacity (TAC) defend cells from extra production of ROS (Bloomer and Fisher-Wellman 2008). The TAC includes endogenous compounds such as uric acid, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (G PXs) and exogenous compounds (i.e. ascorbate, tocopherols, carotenoids, bioflavonoids) (Possamai et al., 2007; Salar-Amoli et al., 2009). The main function of SODs is the transfer of superoxide radical (O2-) into hydrogen peroxide (H2O2). Catalase (CAT) detoxifies H2O2 and glutathione peroxidases (GPXs) removes H2O2 and lipid peroxides. Both CAT and GPXs belong to the secondary defense mechanism by conversion of H2O2 to H2O (Garrel et al.,

* Corresponding author.
E-mail address: dr_hananaher@yahoo.com
DOI: 10.21608/jappmu.2020.87134
2010). Estimating blood enzymatic antioxidants (CAT, GPXs and SODs) together with MDA levels may give valid information on oxidative stress level (Celi, et al., 2010). However, under high oxidative stress the TAC components usually decrease (Halliwell, 2000).

Salinity of salt resistant plants, gestation and lactation are known to be stressful factors on organisms that accelerate the manufacture of ROS that cause oxidative stress (Górecka et al., 2002). Both fetus and dam are likely to know oxidative stress, during gestation (Mutinati et al., 2013). At late gestation, negative energy balance might be the cause for the oxidative stress development, raised lipid peroxidation and decreased antioxidant activity (Rejitha and Karthiayini, 2014). Biomarkers of oxidative stress can be affected by plasma trace element concentrations and nutrition. There are very few reports describing the relationship between antioxidant enzymes and plasma profiles of trace elements as integral components in antioxidant system in goats fed salt tolerant plants.

This study was designed to complete the pervious study of Amer et al. (2014), which revealed oxidative stress effect of feeding pregnant Barki ewes with salt tolerant plants silage and recommended supplementing with trace elements in animals fed salt tolerant plants to improve the antioxidant capacity (as defense system) which enhances the growth performance and productivity of animal.

MATERIALS AND METHODS

This study was carried out at Ras Sudr Station (South Sinai) which belongs to Desert Researcher Centre, Agriculture Ministry, Egypt, during the period from September 2016 to February 2017.

Experimental animals:

At the beginning of the experiment, 32 dry Shami goat does were chosen during the breeding season with average body weight of 36±1.3 kg and 3-4 years old. All animals were housed in semi-open pens through the experimental periods. All does were divided into two similar groups (16 in each) according to the experimental diet. Does in the 1st group (T1) were fed wheat straw and concentrate feed mixture (CFM) and served as control, while those in the 2nd one (T2) were fed salt tolerant plants (50% Sorghum bicolor and 50% Pearl millet) treated with El-Mufeed liquid, as roughages and CFM. Goats were maintained on the treatments 20 days before recording data and mating season as initial period. Fresh tap water was available ad libitum for all animals.

All experimental does were synchronized to estrus with two PGF2α injections given 11 day apart, then does in estrus post the 2nd PGF2α injection were naturally mated with proved fertile Shami bucks. The mated does were diagnosed for pregnancy on day 30 post-mating, and 12 pregnant does from each group were used as experimental animals at different reproductive stages.

Forage sampling:

The salt tolerant plants mixture (Pearl millet and Sorghum bicolor) was supplemented with El-Mufeed (About 250g of El-Mufeed was diluted with equal volume of water and sprayed on the amount of the salt tolerant plant mixture that offered daily to each animal just before morning feeding) to supply fermentable N, energy and minerals ensuring, thus, enhanced microbial growth in the rumen to increase feed intake, improve digestibility of rations and improve animals’ performance. The components of El-Mufeed liquid used in the study were 93.66% cane-molasses, 1.20% urea, 1.39% mineral premix and 3.75% water. Mineral premix contained manganese sulphate monohydrate 8.55 g (2g Mn), copper sulphate anhydrous 1.05g (0.3g Cu), zinc sulphate monohydrate 0.52 g (0.14g Zn), sodium selenite anhydrous 0.03g (9.9mg Se) and sodium chloride as a carrier in amount making all premix up to 1.39 kg for 100 kg El-Mufeed liquid.

Wheat straw was obtained from the Nile Valley, while the salt tolerant plants (Sorghum bicolor and Pearl millet) were planted in the studied area and irrigated with saline water.

The trace elements in the both rations of the two groups in terms of copper (Cu), selenium (Se), manganese (Mn), and zinc (Zn) were established by spectroscopic methods. The trace elements concentrations (ppm) were 9.97 vs. 35.46 for copper (Cu); 42.16 vs. 165.3 for manganese (Mn); 920 vs. 1510 for selenium (Se) and 720 vs. 276 for zinc (Zn) in control and salt tolerant plants samples, respectively.

The chemical composition of different feed stuffs are shown in Table (1) and was measured according to A.O.A.C. (1985).

| Table 1. Chemical composition (%) of experimental feeds (as % on DM basis) |
|-----------------------------|---------------------|----------------|----------|---------|---------|
| Components | DM | OM | CP | EE | CF | NFE | Ash | |
| Wheat-straw | 93 | 75.00 | 3.6 | 1.2 | 30.9 | 39.3 | 25.00 | |
| *Sorghum bicolor* | 92.17 | 86.29 | 9.68 | 6.31 | 22.99 | 47.31 | 13.71 | |
| *Pearl millet* | 91.93 | 83.81 | 9.18 | 8.25 | 21.40 | 44.98 | 16.19 | |
| Salt tolerant mixture* | 92.05 | 85.05 | 9.43 | 7.28 | 22.20 | 46.14 | 14.95 | |
| El-Mufeed liquid | 68.11 | 83.00 | 10.00 | 1.06 | 1.36 | 70.58 | 17.00 | |
| Concentrate feed mixture* | 91.42 | 89.71 | 13.61 | 2.54 | 15.67 | 57.89 | 10.29 | |

DM: dry matter, OM: organic matter, CP: Crude protein, EE: ether extract; CF: crude fiber, NFE: Nitrogen free extract

Blood samples and chemical analysis:

Blood samples (10 ml) were assembled into heparinized tubes from the jugular vein of does (n=12 in each group) at 8 a.m. during different physiological stages (dry, before mating; during pregnancy on days 30, 75, and 140 and on day 30 after parturition as early lactation period. Plasma was separated by cooling centrifugation at 4000 rpm for 20 min. Plasma was kept and kept at -80°C. Micro elements (Cu, Mn, Zn and Se) concentrations in plasma were established using atomic absorption spectrophotometer (Pye Unicam SP9). Lipid peroxidation product as MDA was assessed according to Ohkawa et al. (1979) and stated as nmol/ ml, while TAC (mU/ L) and CAT (U/ L) were determined by chromatography techniques allowing to the method of Koracevic et al. (2001) and Aebi (1984). Superoxide dismutase (SOD) and glutathione peroxidase (GPX) were determined in red blood cells according to the method of Nishikimi et al.
(1972) and Paglia and Valentine (1967), respectively. Kits were purchased from Bio-diagnostic Co., (Cairo, Egypt). All other chemicals were of the highest commercially graded available.

Statistical analysis

A factorial design (2 experimental diets x 5 reproductive stages) of analysis of variance (ANOVA) was statistically used to determine the influence of diet, reproductive stage and their interaction on the studied parameters. All measurements were analyzed by generalized linear model by statistical software Minitab 12.1 (SAS, 2004). The significant differences among means of reproductive stages were determined by Multiple rang test of Duncan. Results were presented as Mean ± SEM.

RESULTS AND DISCUSSION

Oxidative stress and antioxidant status:

Plasma concentration of malondialdehyde (MDA), as a marker of the oxidative stress, was affected significantly by reproductive stage ($P<0.01$) and the experimental diet ($P<0.01$), but the interaction effect was not significant. Level of MDA increased ($P<0.05$) by advancing pregnancy stage up to mid-pregnancy, then it showed insignificant changes up to early lactation. Level of MDA was significantly ($P<0.01$) higher in does fed mixture of salt tolerant (T_2) than in those fed wheat-straw (T_1). The insignificant effect of interaction between the diet and reproductive stage reflected the maximum level of MDA (1.32 nmol/ml) at late pregnancy in Shami goats fed salt tolerant plants compared with controls fed wheat straw (1.04 nmol/ml). The trend of increase in MAD level with the progress of gestation and during lactation was associated with a trend of declined levels of total antioxidant capacity (TAC) and antioxidant enzymes (CAT, SOD and GPXs, Table 2).

According to the current results of MDA, several authors (Patil et al., 2007; Amer et al., 2014; Nawito et al., 2016; Abd El Hameed et al., 2018) reported that MAD increased by progressing the normal pregnancy. In this respect, Casanueva and Viteri (2003) showed that the oxidative stress moved to the peak at the second half of gestation and it may cause the fetus death in the absence of antioxidant. Morris et al. (1998) reported high circulating levels of lipid peroxides in normal pregnancy. Toescu et al. (2002) recorded that late pregnancy was attended by formation of oxidizable particles with increasing oxidative damage. As well, Dimri et al. (2010) indicated that heavy pregnant ruminants lean to have raised lipo-peroxidative processes because of enhanced free oxygen radical’s production and thus have a low status of antioxidative. They concluded that the vulnerability of cells to oxidative stress is a function of the overall balance between the degree oxidative stress and the antioxidant defense capability.

Likewise, Górecka et al. (2002), Patil et al. (2007), Idonijeet al. (2011) and Rizzo et al. (2012) explained that gestation and lactation are reflected as stressful periods complemented by great metabolic need and increased tissue oxygen requirements leading to the production of ROS and rise of oxidative stress markers. This could be clarified by the fact that eighty percent of sheep fetal development occurs in the last two months of pregnancy so the ewes reveal a significant improvement in metabolism during this period (Cristian and Jauhianinen, 2001), accompanied by enhance in fatty acid intake from the mother’s fat store and production of hydrogen peroxide which is increased through the sharp decomposition of fat and the mobilization of fatty acids from body deposits throughout gestation (Öztabak et al., 2005) and Rezapour and Roudbaneh, 2011). This also happens during lactation to withstand the lactogenesis (Adela et al., 2006). These processes increase oxygen requirement and circulating lipids, resulting in increased MAD level (Gür et al. (2011).

Finally, Ognik et al. (2015) reported that several metabolic pathways during pregnancy are dislocated, resulting in greater consumption of energy substrates, oxygen, and high metabolic placental demands, with resultant increasing ROS and oxidative stress.

The increase in maternal lipids profile during gestation varies with trimesters. In early pregnancy, there is improved accumulation of body fat associated with both hyperphagia and increased fat formation, while in late pregnancy, there is accelerated breakdown of fat deposits that play an important role in fetal development (Herrera, 2002). Increased lipid levels in pregnancy may increase the susceptibility of multiple polyunsaturated fatty acids to peroxidation damage by free radicals that may lead to higher MDA production (Ciragil et al., 2005).

Additionally, the increase in placental progesterone is associated with an increase in circulating lipids and MDA (Erisir et al., 2009). In this way, Mohebbi-Fani et al. (2012) recorded that MDA generation occurred during the genesis of the steroid. The high MDA concentrations found in the placenomes reinforce the hypothesis that pregnancy is characterized by oxidative stress (Myatt, 2006), due to the high placental metabolism and steroid development.

The results of this study indicated that pregnancy caused major changes in the antioxidant protective mechanisms in goat blood. There was a reverse association between antioxidant enzyme activities and lipid peroxide or MDA content. Oxidative stress affects continuous increase in the concentration of lipid peroxide products and decline in the level of enzymatic antioxidants (Sharma et al., 2011).

GPX and SOD activities have been found to be decreased during the second trimester of gestation in humans (Qanungo and Mukherjea, 2000). In accordance, Erisir et al. (2009) found that erythrocyte activity of CAT decreased significantly during gestation in Awassi ewes. Also, Öztabak et al. (2005) showed that plasma CAT activity was lower in pregnant Chios ewes during late pregnancy than in the non-pregnant ewes.

Although does in T2 exposed to additional oxidative stress (pregnancy and salt tolerant plant intake), they had nearly the same levels of antioxidant enzymes throughout the experimental period. Moreover, TAC in treated goats increased than that in control ones (0.99 vs. 0.93 mU/L) at the end of experimental period, which resulted in significant interaction between the experimental diet and reproductive stage. This may due to the role of El-Mufeed liquid in progressing digestibility and providing trace minerals.
Table 2. Level of plasma malondialdehyde (MDA), total antioxidant capacity and antioxidant enzymes of pregnant Shami goats as affected by the experimental diet and reproductive stage.

<table>
<thead>
<tr>
<th>Item</th>
<th>Experimental diet (ED)</th>
<th>Reproductive stage (RS)</th>
<th>ED</th>
<th>RS</th>
<th>ED X RS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry</td>
<td>Early pregnancy</td>
<td>Mid pregnancy</td>
<td>Late pregnancy</td>
<td>Early Lactation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dry</td>
<td>Mid</td>
<td>Dry</td>
<td>Mid</td>
</tr>
<tr>
<td>MDA (nmol/ml)</td>
<td>T1</td>
<td>0.92</td>
<td>0.97</td>
<td>1.08</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>1.04</td>
<td>0.96</td>
<td>1.21</td>
<td>1.32</td>
</tr>
<tr>
<td>Overall mean</td>
<td></td>
<td>0.96**</td>
<td>0.97**</td>
<td>1.14**</td>
<td>1.18**</td>
</tr>
<tr>
<td>TAC (mU/L)</td>
<td>T1</td>
<td>1.34</td>
<td>1.25</td>
<td>1.15</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>1.29</td>
<td>1.03</td>
<td>1.03</td>
<td>0.91</td>
</tr>
<tr>
<td>Overall mean</td>
<td></td>
<td>1.31**</td>
<td>1.14**</td>
<td>1.09**</td>
<td>0.96**</td>
</tr>
<tr>
<td>CAT (U/L)</td>
<td>T1</td>
<td>149.22</td>
<td>123.02</td>
<td>98.89</td>
<td>64.87</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>154.36</td>
<td>126.77</td>
<td>85.81</td>
<td>51.21</td>
</tr>
<tr>
<td>Overall mean</td>
<td></td>
<td>151.79**</td>
<td>124.90**</td>
<td>92.35**</td>
<td>58.04**</td>
</tr>
<tr>
<td>SOD (U/L)</td>
<td>T1</td>
<td>235.91</td>
<td>217.61</td>
<td>205.73</td>
<td>160.12</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>247.80</td>
<td>208.30</td>
<td>190.63</td>
<td>135.06</td>
</tr>
<tr>
<td>Overall mean</td>
<td></td>
<td>250.86**</td>
<td>221.96**</td>
<td>198.18**</td>
<td>147.59**</td>
</tr>
<tr>
<td>GPX (mU/L)</td>
<td>T1</td>
<td>272.35</td>
<td>317.74</td>
<td>168.60</td>
<td>194.53</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>304.77</td>
<td>311.25</td>
<td>155.63</td>
<td>201.02</td>
</tr>
<tr>
<td>Overall mean</td>
<td></td>
<td>288.56**</td>
<td>314.50**</td>
<td>162.11**</td>
<td>197.78**</td>
</tr>
</tbody>
</table>

** and * indicate significant differences at P<0.05 and P<0.01, respectively.

Very few studies describe the effect of salinity on antioxidant enzymes. The results of our study revealed increased (P<0.05) overall mean of MDA level associated with significant (P<0.05) decrease in animals fed salt tolerant plants when compared with those fed control diet (white straw). These results agreed with Amer et al. (2014). Moreover, Mohammed et al. (2019) revealed that drinking well water (5000 ppm &10000 ppm) induced significant increase of oxidative stress markers (MDA) and decrease in the values of antioxidants parameters. The negative influences of salt on cell membranes are the results of the accumulation of toxic ions and ROS (Cicerale, 2004). Evidence reminds that cell membranes are the primary sites of salinity infection because ROS can interact with multiple polyunsaturated fatty acids and disrupt cell structure and function and cause peroxidation of essential membrane lipids or organelles within cells, which leads to leakage of cellular contents, rapid dehydration and cell death. Accordingly, lipid peroxide is an indication of oxidative stress in cells and tissues.

Plasma trace elements:

Results of trace elements (Table 3) showed that only plasma Zn content was (P<0.01) affected by the experimental diet. Overall mean of Zn content was higher (P<0.05) in goats fed salt tolerant plants than in control goats (8.82 vs. 6.26 ppm).

Reproductive stage significantly affected all trace elements (Table 3). Trace element contents, including Cu, Mn and Se significantly (P<0.05) decreased by advancing reproductive stage, being the lowest at lactation. However, Zn showed the highest value at early lactation and the lowest value in dry stage. The insignificant interaction on Cu content reflected similar trend of reduction by advancing the reproductive stage in goats fed salt tolerant plants and wheat straw. On the other hand, the significant interaction on other elements reflected in higher Mn and Se in control goats than treated ones during dry stage, but Zinc was higher in control goats at early lactation. An opposite trend was observed for these elements during the other stages.

Metabolism of minerals plays important role in regulating physiological functions during pregnancy and lactation in small ruminants, as these physiological status constitute metabolic stress related with changes in the minerals profile (Ceylan et al., 2009; Elnageeb and Adelatif, 2010). The concentration of minerals in the blood varies as a result of interactions between its body stores, the transfer of nutrients to the fetus, and the start of milk synthesis (Kincade, 2008). Gestation provides significant pressure to micro mineral balance in mammals (Mills and Davies, 1979). The level of copper in tissues and body fluids depends on diet, age, health and gender (Ashton, 1970). In this context, Elnageeb and Adelatif (2010) explained that the low level of copper during lactation could be related the animal’s response to the fetus’ needs by increasing the filling of stored copper for the development of the nervous system.

The observed decrease in levels of Cu, Mn and Se by advancing reproductive stage was in similar patterns with the behavior of antioxidant enzymes (Table 2). This may suggest that MDA level and activity of antioxidant enzymes can be influenced by nutrition and plasma trace element concentrations. Many results ensured this relationship. In calves, Humphries et al. (1983) found that dietary Cu deficiency led to a sharp decrease in plasma concentration of Cu and red blood cells activity of SOD. Likewise, Nazifi et al. (2010b) recorded a positive correlation between the plasma concentration of Cu and SOD activity of red blood cells because Cu, Zn and Mg are the major components of essential fatty acids metabolism, synthesis protein and...
nucleic acid metabolism, among others (Powell, 2000; McCall et al., 2000; Stefanidou et al., 2006). Unexpectedly, the zinc concentrations in plasma goat plasma fed salinity-tolerant plants exceeded those of the control group (8.82 vs. 6.26 ppm, Table 3) although the low levels of Zn intake (720 vs. 276 in control and salt tolerant plants samples, respectively). It may be that that animals fed salt tolerant plants treated with El-Mufeed liquid were more efficient at benefiting from lower zinc intake. Elnageeb and Abdelatif (2010) suggested that combining reduced nutritional status and pregnancy in finishing ewes might increase the efficiency of zinc intake. The largest part of the total body zinc is found in the bones and competes with copper for absorption from the intestine (Kargin et al., 2004). The high level of zinc in the mid and late pregnancy could be attributed to the increased rate of zinc collection in the fetus. Williams et al. (1972) recorded that the developing fetus accumulates 1 to 2 mg of zinc a day and that pregnant ewes increase the demand for zinc at the end of pregnancy.

Awadeh et al. (1998) and Trávníček et al. (2008) demonstrated a high correlation between the whole blood selenium content and Glutathione peroxidase (GSH-Px) activity in ewe blood, where about 1.8% of total selenium in the in this compound is related. GSH-Px activity can be considered a good indicator and diagnostic tool to determine the state of selenium in sheep (Pavlata et al., 2012) and thus in assessing the state of antioxidants (Adela et al., 2006).

Table 3. Trace elements concentrations of Shami goats as affected by the experimental diet and reproductive stage.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Experimental Diet (ED)</th>
<th>Reproductive stage (RS)</th>
<th>Overall mean</th>
<th>±SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu, ppm</td>
<td>T1</td>
<td>Dry 0.89</td>
<td>Mid 0.75</td>
<td>Late 0.99</td>
</tr>
<tr>
<td>Mn, ppm</td>
<td>T1</td>
<td>Early pregnancy 0.807</td>
<td>Mid pregnancy 0.197</td>
<td>Overall mean 0.81 ± 0.33</td>
</tr>
<tr>
<td>Zn, ppm</td>
<td>T1</td>
<td>Dry 4.03</td>
<td>Early pregnancy 0.224</td>
<td>Overall mean 4.60 ± 0.31</td>
</tr>
<tr>
<td>Se, ppm</td>
<td>T1</td>
<td>Early pregnancy 0.253</td>
<td>Mid pregnancy 0.265</td>
<td>Overall mean 0.254 ± 0.002</td>
</tr>
</tbody>
</table>

Means with different letters in the same row are significantly different at P<0.05, TAC: total antioxidant capacity; CAT: catalase; SOD: superoxide dismutase; GPX: glutathione peroxidase, T1: Diet white straw; T2: Diet with salt tolerant plants treated with El-Mufeed liquid, *: P<0.05; **: P<0.01; NS: non-significant

CONCLUSION

We can conclude that El-Mufeed liquid supply animals with trace minerals to be closed to control group and goats fed with salt tolerant plants treated with El-Mufeed liquid adapted with salinity and adverse effects of these plants and antioxidant defense mechanisms limit oxidative damage and finally ensure good health in spite of adverse effect of pregnancy. So, we recommended supplying animals fed salt plants with El-Mufeed liquid to reduce the harmful effects of salt plants and improve the antioxidant capacity which consequently enhances growth performance and animal productivity

Competing interests

The authors state that they do not have conflict of interest regarding research, authorship, and/or publications of this article. The authors declare that they have no competing interests.

ACKNOWLEDGMENT

This study is a part of the regional project titled “Adaptation to climate changes in WANA marginal environments through sustainable crop and livestock diversification” funded by International Center for Biosaline Agricultural (ICBA), UAE.

REFERENCES

Hanan Z. Amer et al.

الأجهاد التأكسدي: حالة العناصر النادرة للفئات النباتية المحمولة للملوحة أثناء الحمل والرضاعة والدائم.

الإناث الماعز التي تناولت النباتات المتحملة للملوحة خلال فترة الحمل والرضاعة والدائم، يظهر انخفاض مستوى الانماط المضادة للأكسدة في كريات الدم الحمراء، مع ارتفاع مستوى مراقبة النظام الكيميائي (CAT, TAC) بالإضافة إلى التغيرات في مؤشرات الأكسدة المختلفة.

النظام التالي للعناصر النادرة المضادة للأكسدة في كريات الدم الحمراء:

- CAT: قدرة انعكاس الأكسدة.
- TAC: قدرة التحلل الأكسدة.
- MAD: قدرة التمكين الأكسدة.

الناجح حامد متولي ابراهيم

كلية الزراعة، جامعة بني سويف، مصر.

116