• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Animal and Poultry Production
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 16 (2025)
Volume Volume 15 (2024)
Volume Volume 14 (2023)
Volume Volume 13 (2022)
Volume Volume 12 (2021)
Volume Volume 11 (2020)
Issue Issue 12
Issue Issue 11
Issue Issue 10
Issue Issue 9
Issue Issue 8
Issue Issue 7
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 10 (2019)
Volume Volume 9 (2018)
Volume Volume 8 (2017)
Volume Volume 7 (2016)
Volume Volume 6 (2015)
Volume Volume 5 (2014)
Volume Volume 4 (2013)
Volume Volume 3 (2012)
Volume Volume 2 (2011)
Volume Volume 1 (2010)
Volume Volume 34 (2009)
Volume Volume 33 (2008)
Volume Volume 32 (2007)
Volume Volume 31 (2006)
Volume Volume 30 (2005)
Volume Volume 29 (2004)
Volume Volume 28 (2003)
Volume Volume 27 (2002)
Volume Volume 26 (2001)
Volume Volume 25 (2000)
babaca, Z., Rashid, R., Sofee, Y. (2020). The Fate of The Poultry Industry Forecasting in Kurdistan Region by Using Neural Networks تنبؤات صناعة الدواجن في منطقة کردستان من خلال استخدام الشبکات العصبية. Journal of Animal and Poultry Production, 11(10), 421-424. doi: 10.21608/jappmu.2020.123637
zahir abdullateef babaca; Rakan S. Rashid; Younis Y. Sofee. "The Fate of The Poultry Industry Forecasting in Kurdistan Region by Using Neural Networks تنبؤات صناعة الدواجن في منطقة کردستان من خلال استخدام الشبکات العصبية". Journal of Animal and Poultry Production, 11, 10, 2020, 421-424. doi: 10.21608/jappmu.2020.123637
babaca, Z., Rashid, R., Sofee, Y. (2020). 'The Fate of The Poultry Industry Forecasting in Kurdistan Region by Using Neural Networks تنبؤات صناعة الدواجن في منطقة کردستان من خلال استخدام الشبکات العصبية', Journal of Animal and Poultry Production, 11(10), pp. 421-424. doi: 10.21608/jappmu.2020.123637
babaca, Z., Rashid, R., Sofee, Y. The Fate of The Poultry Industry Forecasting in Kurdistan Region by Using Neural Networks تنبؤات صناعة الدواجن في منطقة کردستان من خلال استخدام الشبکات العصبية. Journal of Animal and Poultry Production, 2020; 11(10): 421-424. doi: 10.21608/jappmu.2020.123637

The Fate of The Poultry Industry Forecasting in Kurdistan Region by Using Neural Networks تنبؤات صناعة الدواجن في منطقة کردستان من خلال استخدام الشبکات العصبية

Article 7, Volume 11, Issue 10, October 2020, Page 421-424  XML PDF (1.12 MB)
Document Type: Original Article
DOI: 10.21608/jappmu.2020.123637
View on SCiNiTO View on SCiNiTO
Authors
zahir abdullateef babaca email 1; Rakan S. Rashid2; Younis Y. Sofee3
1Nursing department, Bardarash technical institute, Duhok polytechnic university, Duhok, Iraq
2Department of IT, Bardarash Technical Institution, Dohuk Rakan.rashid@ dpu.edu.krd
3Shaqlawa Veterinary Hospital, Erbil techmag2011@yahoo.com
Abstract
The most recent studies demonstrate the predictive power of neural-networks. Used neural-networks were success to predict of economic results trends, and the neural-networks have an advantage, whereas its can the nonlinear functions approximate. In doing so, it can provide the alternative analysis regression of the biology of modeling growth. Some Few searches were conducted by neural-networks on the animal growth model artificially. The present study was conducted to compare, the parameters of various associated input performance. For example, the chickens price/kg in poultry farm, the price/tons of poultry feed, the quantity import of white meat, and the numbers of chickens slaughtered, which is expected to be of help in future for our study. We applied series of data/monthly for rates exchange in between 2009 to 2014. Aims of recent study in the first place; to develop ANN- based models to study the Fate of the Poultry Industry Forecasting in Kurdistan Region. Secondly, through previous data we can recommend that, neural-networks method, more suitable in chicken industries, than the simple analysis regression, if accurate data are collected and processed in such forms.
Keywords
Neural Networks; Poultry Industry; Forecasting
Statistics
Article View: 268
PDF Download: 573
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.